This paper proposes a technique to derive behavioral models for describing the mutual inductance between the coupled coils used in Wireless Power Transfer Systems for the electrical recharging of vehicles. These models describe analytically the dependence of the mutual inductance with respect to geometrical parameters related to the coils misalignments, to take into account the real operating conditions of such recharging systems. A Multi-Objective Genetic Programming (MOGP) algorithm has been adopted to discover behavioral models offering optimal trade-off between accuracy and complexity. The behavioral models are identified from a set of data evaluated by using literature analytical models and are then validated by using another set of such data and also by comparing the results with full 3D Finite Element numerical simulations.
Behavioral modeling of Wireless Power Transfer System coils
Di Mambro G.Software
;Maffucci A.Supervision
;Ventre S.Methodology
;Villone F.Conceptualization
2021-01-01
Abstract
This paper proposes a technique to derive behavioral models for describing the mutual inductance between the coupled coils used in Wireless Power Transfer Systems for the electrical recharging of vehicles. These models describe analytically the dependence of the mutual inductance with respect to geometrical parameters related to the coils misalignments, to take into account the real operating conditions of such recharging systems. A Multi-Objective Genetic Programming (MOGP) algorithm has been adopted to discover behavioral models offering optimal trade-off between accuracy and complexity. The behavioral models are identified from a set of data evaluated by using literature analytical models and are then validated by using another set of such data and also by comparing the results with full 3D Finite Element numerical simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.