The fifth generation mobile network introduces dramatic improvements with respect to the previous technologies. Features such as variable numerology, bandwidth parts, massive Multiple Input Multiple Output (MIMO) and Time Division Duplex (TDD) will extend the capabilities of the 5G wireless systems and, at the same time, will influence the measurement techniques used to assess the compliance with general public electromagnetic field exposure limits. In this study, a heterogeneous set of 5G signals is investigated with the aim of establishing an effective measurement technique suitable for the new technology. Following an experimental approach based on both modulation and zero span analysis, some important characteristics of the 5G system are highlighted and extensively discussed, and experimental procedures for estimating factors associated to TDD (FTDC factor) and beam sweeping (R factor), to be used in the extrapolation formulas, are presented. The results of this study represent a starting point for future investigations on effective methods to estimate both the instant maximum power and the total power transmitted during a 5G radio frame.

An experimental investigation on the impact of duplexing and beamforming techniques in field measurements of 5G signals

Marco Donald Migliore
;
2020-01-01

Abstract

The fifth generation mobile network introduces dramatic improvements with respect to the previous technologies. Features such as variable numerology, bandwidth parts, massive Multiple Input Multiple Output (MIMO) and Time Division Duplex (TDD) will extend the capabilities of the 5G wireless systems and, at the same time, will influence the measurement techniques used to assess the compliance with general public electromagnetic field exposure limits. In this study, a heterogeneous set of 5G signals is investigated with the aim of establishing an effective measurement technique suitable for the new technology. Following an experimental approach based on both modulation and zero span analysis, some important characteristics of the 5G system are highlighted and extensively discussed, and experimental procedures for estimating factors associated to TDD (FTDC factor) and beam sweeping (R factor), to be used in the extrapolation formulas, are presented. The results of this study represent a starting point for future investigations on effective methods to estimate both the instant maximum power and the total power transmitted during a 5G radio frame.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/75088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
social impact