We extend and adapt a class of estimators of the parameter H of the fractional Brownian motion in order to estimate the (time-dependent) memory function of a multifractional process. We provide: (a) the estimator's distribution when H \in (0, 3/4); (b) the confidence interval under the null hypothesis H=1/2; (c) a scaling law, independent on the value of H, discriminating between fractional and multifractional processes. Furthermore, assuming as a model for the price process the multifractional Brownian motion, empirical evidence is offered which is able to conciliate the inconsistent results achieved in estimating the intensity of dependence in financial time series

Pathwise Identification of the Memory Function of the Multifractional Brownian Motion with Application to Finance

BIANCHI, Sergio
2005-01-01

Abstract

We extend and adapt a class of estimators of the parameter H of the fractional Brownian motion in order to estimate the (time-dependent) memory function of a multifractional process. We provide: (a) the estimator's distribution when H \in (0, 3/4); (b) the confidence interval under the null hypothesis H=1/2; (c) a scaling law, independent on the value of H, discriminating between fractional and multifractional processes. Furthermore, assuming as a model for the price process the multifractional Brownian motion, empirical evidence is offered which is able to conciliate the inconsistent results achieved in estimating the intensity of dependence in financial time series
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/7426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
social impact