A well-posed stress-driven mixture is proposed for Timoshenko nano-beams. The model is a convex combination of local and nonlocal phases and circumvents some problems of ill-posedness emerged in strain-driven Eringen-like formulations for structures of nanotechnological interest. The nonlocal part of the mixture is the integral convolution between stress field and a bi-exponential averaging kernel function characterized by a scale parameter. The stress-driven mixture is equivalent to a differential problem equipped with constitutive boundary conditions involving bending and shear fields. Closed-form solutions of Timoshenko nano-beams for selected boundary and loading conditions are established by an effective analytical strategy. The numerical results exhibit a stiffening behavior in terms of scale parameter.

A stress-driven local-nonlocal mixture model for Timoshenko nano-beams

Caporale, Andrea;
2019-01-01

Abstract

A well-posed stress-driven mixture is proposed for Timoshenko nano-beams. The model is a convex combination of local and nonlocal phases and circumvents some problems of ill-posedness emerged in strain-driven Eringen-like formulations for structures of nanotechnological interest. The nonlocal part of the mixture is the integral convolution between stress field and a bi-exponential averaging kernel function characterized by a scale parameter. The stress-driven mixture is equivalent to a differential problem equipped with constitutive boundary conditions involving bending and shear fields. Closed-form solutions of Timoshenko nano-beams for selected boundary and loading conditions are established by an effective analytical strategy. The numerical results exhibit a stiffening behavior in terms of scale parameter.
File in questo prodotto:
File Dimensione Formato  
A-stress-driven-local-nonlocal-mixture-model-for-_2019_Composites-Part-B--En.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/72005
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
social impact