The analysis of the TM electromagnetic scattering from perfectly electrically conducting polygonal cross-section cylinders is successfully carried out by means of an electric field integral equation formulation in the spectral domain and the method of analytical preconditioning which leads to a matrix equation at which Fredholm’s theory can be applied. Hence, the convergence of the discretization scheme is guaranteed. Unfortunately, the matrix coefficients are improper integrals involving oscillating and, in the worst cases, slowly decaying functions. Moreover, the classical analytical asymptotic acceleration technique leads to faster decaying integrands without overcoming the most important problem of their oscillating nature.Thus, the computation time rapidly increases as higher is the accuracy required for the solution. The aim of this paper is to show a new analytical technique for the efficient evaluation of such kind of integrals even when high accuracy is required for the solution.
TM Electromagnetic Scattering from PEC Polygonal Cross-Section Cylinders: A New Analytical Approach for the Efficient Evaluation of Improper Integrals Involving Oscillating and Slowly Decaying Functions
Lucido, Mario
;Santomassimo, Chiara;Schettino, Fulvio;Migliore, Marco Donald;Pinchera, Daniele;Panariello, Gaetano
2019-01-01
Abstract
The analysis of the TM electromagnetic scattering from perfectly electrically conducting polygonal cross-section cylinders is successfully carried out by means of an electric field integral equation formulation in the spectral domain and the method of analytical preconditioning which leads to a matrix equation at which Fredholm’s theory can be applied. Hence, the convergence of the discretization scheme is guaranteed. Unfortunately, the matrix coefficients are improper integrals involving oscillating and, in the worst cases, slowly decaying functions. Moreover, the classical analytical asymptotic acceleration technique leads to faster decaying integrands without overcoming the most important problem of their oscillating nature.Thus, the computation time rapidly increases as higher is the accuracy required for the solution. The aim of this paper is to show a new analytical technique for the efficient evaluation of such kind of integrals even when high accuracy is required for the solution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.