We present theRpackageclustrdwhich implements a class of methods that combinedimension reduction and clustering of continuous or categorical data. In particular, forcontinuous data, the package contains implementations of factorial K-means and reducedK-means; both methods combine principal component analysis with K-means clustering.For categorical data, the package provides MCA K-means, i-FCB and cluster correspon-dence analysis, which combine multiple correspondence analysis with K-means. Twoexamples on real datasets are provided to illustrate the usage of the main functions.

Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R

Iodice D'Enza, Alfonso;
In corso di stampa

Abstract

We present theRpackageclustrdwhich implements a class of methods that combinedimension reduction and clustering of continuous or categorical data. In particular, forcontinuous data, the package contains implementations of factorial K-means and reducedK-means; both methods combine principal component analysis with K-means clustering.For categorical data, the package provides MCA K-means, i-FCB and cluster correspon-dence analysis, which combine multiple correspondence analysis with K-means. Twoexamples on real datasets are provided to illustrate the usage of the main functions.
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/70195
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact