Natural stone is generally used in the buildings decoration and furniture finishes for its aesthetic properties and durability. However, its brittle nature limits its applications, in fact the tensile strength of stone is considerably less than its compression strength; this disparity can limit the use of stone in applications where tensile and flexural strength capacity is required, such as for long spans or thin sections. The aim of this work is to investigate the use of sandwich structural laminate in composite materials as external reinforcement both to increase the mechanical resistance and to decrease weight of natural stone. High strength glass/epoxy laminates were bonded to the lower surfaces of marble and granite beams, and 3-point bend and short-beam tests were performed on reinforced and unreinforced specimens. Results indicate that external composite reinforcement can increase the mechanical property of both types of stone up to an order of magnitude as compared to unreinforced control samples.

Mechanical performances increasing of natural stones by GFRP sandwich structures

Costanzo Bellini
;
Wilma Polini;Luca Sorrentino;Sandro Turchetta
2018-01-01

Abstract

Natural stone is generally used in the buildings decoration and furniture finishes for its aesthetic properties and durability. However, its brittle nature limits its applications, in fact the tensile strength of stone is considerably less than its compression strength; this disparity can limit the use of stone in applications where tensile and flexural strength capacity is required, such as for long spans or thin sections. The aim of this work is to investigate the use of sandwich structural laminate in composite materials as external reinforcement both to increase the mechanical resistance and to decrease weight of natural stone. High strength glass/epoxy laminates were bonded to the lower surfaces of marble and granite beams, and 3-point bend and short-beam tests were performed on reinforced and unreinforced specimens. Results indicate that external composite reinforcement can increase the mechanical property of both types of stone up to an order of magnitude as compared to unreinforced control samples.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/69279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact