In the field of handwriting recognition, classifier combination received much more interest than the study of powerful individual classifiers. This is mainly due to the enormous variability among the patterns to be classified, that typically requires the definition of complex high dimensional feature spaces: as the overall complexity increases, the risk of inconsistency in the decision of the classifier increases as well. In this framework, we propose a new combining method based on the use of a Bayesian Network. In particular, we suggest to reformulate the classifier combination problem as a pattern recognition one in which each input pattern is associated to a feature vector composed by the output of the classifiers to be combined. A Bayesian Network is then used to automatically infer the probability distribution for each class and eventually to perform the final classification. Experiments have been performed by using two different pools of classifiers, namely an ensemble of Learning Vector Quantization neural networks and an ensemble of Back Propagation neural networks, and handwritten specimen from the UCI Machine Learning Repository. The obtained performance has been compared with those exhibited by multi-classifier systems adopting the classifiers, but three of the most effective and widely used combining rules: the Majority Vote, the Weighted Majority Vote and the Borda Count.

Classifier Combination by Bayesian Networks for Handwriting Recognition

DE STEFANO, Claudio;D'ELIA, Ciro;SCOTTO DI FRECA, Alessandra
2009-01-01

Abstract

In the field of handwriting recognition, classifier combination received much more interest than the study of powerful individual classifiers. This is mainly due to the enormous variability among the patterns to be classified, that typically requires the definition of complex high dimensional feature spaces: as the overall complexity increases, the risk of inconsistency in the decision of the classifier increases as well. In this framework, we propose a new combining method based on the use of a Bayesian Network. In particular, we suggest to reformulate the classifier combination problem as a pattern recognition one in which each input pattern is associated to a feature vector composed by the output of the classifiers to be combined. A Bayesian Network is then used to automatically infer the probability distribution for each class and eventually to perform the final classification. Experiments have been performed by using two different pools of classifiers, namely an ensemble of Learning Vector Quantization neural networks and an ensemble of Back Propagation neural networks, and handwritten specimen from the UCI Machine Learning Repository. The obtained performance has been compared with those exhibited by multi-classifier systems adopting the classifiers, but three of the most effective and widely used combining rules: the Majority Vote, the Weighted Majority Vote and the Borda Count.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/6854
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
social impact