Fe(II)-mediated autotrophic denitrification with four different microbial cultures under different pH and EDTA/Fe(II) conditions was investigated in batch bioassays. Initially, the highest nitrate removal (72%) was achieved with an activated sludge inoculum. The use of pure cultures of Pseudogulbenkiania strain 2002 and Thiobacillus denitrificans resulted in a 55 and 52% nitrate removal, respectively. No denitrification was observed for a mixed culture dominated by Thiobacillus thioparus and T. denitrificans. A longer enrichment on Fe(II) and the supplementation of thiosulfate as additional electron donor were needed to stimulate the denitrifying activity of the Thiobacillus-mixed culture. A second subculture on Fe(II) as sole electron donor resulted in higher denitrification efficiencies for all microbial cultures. In particular, nitrate removal reached up to 84% with a specific nitrate removal rate of 1.160 mM·(g VSS·day)-1in the bioassays seeded with the Thiobacillus-mixed culture. All cultures were favored by decreasing the EDTA/Fe(II) molar ratio from 2.0 to 0.5. The most significant denitrification enhancement was observed for the Pseudogulbenkiania species, indicating a lower tolerance to EDTA. The two pure cultures effectively maintained denitrification at pH 7.0 and were more sensitive to a pH decrease. Conversely, the optimal pH was 6.0 for the Thiobacillus-mixed and activated sludge cultures.

Influence of pH, EDTA/Fe(II) ratio, and microbial culture on Fe(II)-mediated autotrophic denitrification

Papirio, Stefano;Esposito, Giovanni
2017-01-01

Abstract

Fe(II)-mediated autotrophic denitrification with four different microbial cultures under different pH and EDTA/Fe(II) conditions was investigated in batch bioassays. Initially, the highest nitrate removal (72%) was achieved with an activated sludge inoculum. The use of pure cultures of Pseudogulbenkiania strain 2002 and Thiobacillus denitrificans resulted in a 55 and 52% nitrate removal, respectively. No denitrification was observed for a mixed culture dominated by Thiobacillus thioparus and T. denitrificans. A longer enrichment on Fe(II) and the supplementation of thiosulfate as additional electron donor were needed to stimulate the denitrifying activity of the Thiobacillus-mixed culture. A second subculture on Fe(II) as sole electron donor resulted in higher denitrification efficiencies for all microbial cultures. In particular, nitrate removal reached up to 84% with a specific nitrate removal rate of 1.160 mM·(g VSS·day)-1in the bioassays seeded with the Thiobacillus-mixed culture. All cultures were favored by decreasing the EDTA/Fe(II) molar ratio from 2.0 to 0.5. The most significant denitrification enhancement was observed for the Pseudogulbenkiania species, indicating a lower tolerance to EDTA. The two pure cultures effectively maintained denitrification at pH 7.0 and were more sensitive to a pH decrease. Conversely, the optimal pH was 6.0 for the Thiobacillus-mixed and activated sludge cultures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/67144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 43
social impact