Mechanical behavior and damaging micromechanisms in Ductile Cast Irons (DCIs) are strongly effected by matrix microstructure (e.g., phases volume fraction, grains size and grain distribution) and graphite nodules morphology peculiarities (e.g., nodularity level, nodule size, nodule count, etc.). The influence of the graphite nodules depends on both the matrix microstructure and the loading conditions (e.g., quasi-static, dynamic or cyclic loadings). According to the most recent results, these graphite nodules show a mechanical properties gradient inside the graphite nodules, with the graphite elements – matrix debonding as only one of the possible damaging micromechanisms. In this work, two different ferritic DCIs were investigated (a ferritic matrix obtained from as-cast condition and a ferritized matrix) focusing on the damaging micromechanisms in graphite nodules due to tensile stress. Specimens lateral surfaces were observed using a Scanning Electron Microscope (SEM) during the tests following a step by step procedure

Damaging micromechanisms in an as cast ferritic and a ferritized ductile cast iron

D'Agostino, Laura
Membro del Collaboration Group
;
Di Cocco, Vittorio
Membro del Collaboration Group
;
Iacoviello, Francesco
Membro del Collaboration Group
2017-01-01

Abstract

Mechanical behavior and damaging micromechanisms in Ductile Cast Irons (DCIs) are strongly effected by matrix microstructure (e.g., phases volume fraction, grains size and grain distribution) and graphite nodules morphology peculiarities (e.g., nodularity level, nodule size, nodule count, etc.). The influence of the graphite nodules depends on both the matrix microstructure and the loading conditions (e.g., quasi-static, dynamic or cyclic loadings). According to the most recent results, these graphite nodules show a mechanical properties gradient inside the graphite nodules, with the graphite elements – matrix debonding as only one of the possible damaging micromechanisms. In this work, two different ferritic DCIs were investigated (a ferritic matrix obtained from as-cast condition and a ferritized matrix) focusing on the damaging micromechanisms in graphite nodules due to tensile stress. Specimens lateral surfaces were observed using a Scanning Electron Microscope (SEM) during the tests following a step by step procedure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/66182
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact