ustenitic-ferritic stainless steels combine the favorable properties of ferrite and austenite, showing both high mechanical properties and very good corrosion resistance. These steels are characterized by the precipitation of many secondary phases, carbides and nitrides for tempering temperatures between 200 and 1050°C. This phenomenon implies a high susceptibility to localized corrosion, however better than austenitic and ferritic grades. In this work, the susceptibility to intergranular corrosion in of two duplex stainless steel characterized by analogous ferrite/austenite volume fraction was investigated. A “standard” duplex stainless steel SAF 2205 and a “super” duplex stainless steel SAF 2507 were investigated by means of potentiostatic reactivations tests. In addition, chronoamperometric tests and light optical microscope observations of the specimens surfaces were performed in order to analyze the evolution of the corrosion morphologies
Integranular corrosion susceptibility analysis in austeno-ferritic (duplex) stainless steels
Iacoviello, Francesco
Membro del Collaboration Group
;Di Cocco, VittorioMembro del Collaboration Group
;D'Agostino, LauraMembro del Collaboration Group
2017-01-01
Abstract
ustenitic-ferritic stainless steels combine the favorable properties of ferrite and austenite, showing both high mechanical properties and very good corrosion resistance. These steels are characterized by the precipitation of many secondary phases, carbides and nitrides for tempering temperatures between 200 and 1050°C. This phenomenon implies a high susceptibility to localized corrosion, however better than austenitic and ferritic grades. In this work, the susceptibility to intergranular corrosion in of two duplex stainless steel characterized by analogous ferrite/austenite volume fraction was investigated. A “standard” duplex stainless steel SAF 2205 and a “super” duplex stainless steel SAF 2507 were investigated by means of potentiostatic reactivations tests. In addition, chronoamperometric tests and light optical microscope observations of the specimens surfaces were performed in order to analyze the evolution of the corrosion morphologiesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.