Wastewater quality monitoring is receiving growing interest with the necessity of developing new strategies for controlling accidental and intentional illicit intrusions. In designing a monitoring network, a crucial aspect is represented by the sensors’ location. In this study, a methodology for the optimal placement of wastewater monitoring sensors in sewer systems is presented. The sensor location is formulated as an optimization problem solved using greedy algorithms (GRs). The StormWater Management Model (SWMM) was used to perform hydraulic and water-quality simulations. Six different procedures characterized by different fitness functions are presented and compared. The performances of the procedures are tested on a real sewer system, demonstrating the suitability of GRs for the sensor-placement problem. The results show a robustness of the methodology with respect to the detection concentration parameter, and they suggest that procedures with multiple objectives into a single fitness function give better results. A further comparison is performed using previously developed multi-objective procedures with multiple fitness functions solved using a genetic algorithm (GA), indicating better performances of the GR. The existing monitoring network, realized without the application of any sensor design, is always suboptimal.

Greedy Algorithms for Sensor Location in Sewer Systems

Bijit K. Banik;Cristiana Di Cristo
;
Angelo Leopardi
2017-01-01

Abstract

Wastewater quality monitoring is receiving growing interest with the necessity of developing new strategies for controlling accidental and intentional illicit intrusions. In designing a monitoring network, a crucial aspect is represented by the sensors’ location. In this study, a methodology for the optimal placement of wastewater monitoring sensors in sewer systems is presented. The sensor location is formulated as an optimization problem solved using greedy algorithms (GRs). The StormWater Management Model (SWMM) was used to perform hydraulic and water-quality simulations. Six different procedures characterized by different fitness functions are presented and compared. The performances of the procedures are tested on a real sewer system, demonstrating the suitability of GRs for the sensor-placement problem. The results show a robustness of the methodology with respect to the detection concentration parameter, and they suggest that procedures with multiple objectives into a single fitness function give better results. A further comparison is performed using previously developed multi-objective procedures with multiple fitness functions solved using a genetic algorithm (GA), indicating better performances of the GR. The existing monitoring network, realized without the application of any sensor design, is always suboptimal.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/65042
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
social impact