In this paper we simulate the charged particle interaction with complex structures, including the emission, with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by black Tedlar paper, and silicon photo-multiplier sensors. We report here on results of a simulation of the radiation from positrons striking the calorimeter system. The Cherenkov radiation expansion when a positron moves down through the calorimeter at the arbitrary angle of incidence has been considered. Both spectral and angular distributions of Cherenkov optical photons in different parts of the calorimeter system was evaluated as well as the transition radiation and pre-shower distributions from both the Delrin panel and the Al vacuum chamber of the g-2 storage ring.
Geant4 simulations of the lead fluoride calorimeter
DI STEFANO, Roberto;MARIGNETTI, Fabrizio;PIACENTINO, Giovanni Maria;
2017-01-01
Abstract
In this paper we simulate the charged particle interaction with complex structures, including the emission, with help of Geant4. We take into account Cherenkov radiation, transition radiation, bremsstrahlung, pair production and other accompanying processes. As an application we investigate the full size electromagnetic calorimeter for the muon g-2 experiment at Fermilab. A calorimeter module consists of a Delrin front panel for installation of the laser calibration system, 54 PbF2 Cherenkov crystals wrapped by black Tedlar paper, and silicon photo-multiplier sensors. We report here on results of a simulation of the radiation from positrons striking the calorimeter system. The Cherenkov radiation expansion when a positron moves down through the calorimeter at the arbitrary angle of incidence has been considered. Both spectral and angular distributions of Cherenkov optical photons in different parts of the calorimeter system was evaluated as well as the transition radiation and pre-shower distributions from both the Delrin panel and the Al vacuum chamber of the g-2 storage ring.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.