Calibration of parameters of mathematical models is still a tough task in several engineering problems. Many of the models adopted for the numerical simulations of real phenomena, in fact, are of empirical derivation. Therefore, they include parameters which have to be calibrated in order to correctly reproduce the physical evidence. Thus, the success of a numerical model application depends on the quality of the performed calibration, which can be of great complexity, especially if the number of parameters is higher than one. Calibration is traditionally performed by engineers and researchers through manual trial-and-error procedures. However, since models themselves are increasingly sophisticated, it seems more proper to look at more advanced calibration procedures. In this work, in particular, an optimization technique for a multi-parameter calibration is applied to a two-phase depth-averaged model, already adopted in previous works to simulate morphodynamic processes, such as, for example, the dike erosion by overtopping.

A multi-parameter calibration method for the numerical simulation of morphodynamic problems

EVANGELISTA, Stefania;GIOVINCO, Gaspare;
2017-01-01

Abstract

Calibration of parameters of mathematical models is still a tough task in several engineering problems. Many of the models adopted for the numerical simulations of real phenomena, in fact, are of empirical derivation. Therefore, they include parameters which have to be calibrated in order to correctly reproduce the physical evidence. Thus, the success of a numerical model application depends on the quality of the performed calibration, which can be of great complexity, especially if the number of parameters is higher than one. Calibration is traditionally performed by engineers and researchers through manual trial-and-error procedures. However, since models themselves are increasingly sophisticated, it seems more proper to look at more advanced calibration procedures. In this work, in particular, an optimization technique for a multi-parameter calibration is applied to a two-phase depth-averaged model, already adopted in previous works to simulate morphodynamic processes, such as, for example, the dike erosion by overtopping.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/61415
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact