This paper presents an electromagnetic and a circuit model to describe the propagation of electric signals along interconnects made by carbon nanotubes. The models are both derived from an enhanced fluid description of the carbon nanotube electrodynamics which takes into account size effects disregarded in th~ literature. The electromagnetic model is obtained in a surface integral formulation by coupling the fluid equation to the full-wave Maxwell equations and is numerically solved using a null-pinv decomposition technique. The circuit model is derived within the frame of the classical multiconductor transmission line theory. Both the models are used to analyze case-studies of interest where the carbon nanotube technology is used to build electrical nano-interconnects.

Electromagnetic and circuital modeling of carbon nanotube interconnects

MAFFUCCI, Antonio;VILLONE, Fabio
2008-01-01

Abstract

This paper presents an electromagnetic and a circuit model to describe the propagation of electric signals along interconnects made by carbon nanotubes. The models are both derived from an enhanced fluid description of the carbon nanotube electrodynamics which takes into account size effects disregarded in th~ literature. The electromagnetic model is obtained in a surface integral formulation by coupling the fluid equation to the full-wave Maxwell equations and is numerically solved using a null-pinv decomposition technique. The circuit model is derived within the frame of the classical multiconductor transmission line theory. Both the models are used to analyze case-studies of interest where the carbon nanotube technology is used to build electrical nano-interconnects.
2008
9781424428137
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/5926
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact