Background: Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods: In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets’ microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results: Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10-2 to 5.5∙10-2 S·cm-1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions: The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.

Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route

SPIRIDIGLIOZZI, Luca;DELL'AGLI, Gianfranco
2016-01-01

Abstract

Background: Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. Methods: In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets’ microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. Results: Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10-2 to 5.5∙10-2 S·cm-1 at 600°C and 800°C for GDC with 20 mol% of gadolinium. Conclusions: The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/56387
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 47
social impact