Matrix microstructure (e.g., phases volume fraction, grains size and grain distribution) and graphite nodules morphology peculiarities (e.g., nodularity level, dimension, distribution etc.) strongly affect the mechanical behavior and damaging micromechanisms in Ductile Cast Irons (DCIs). Concerning the influence of the graphite nodules, it depends both on the matrix microstructure and the loading conditions (e.g., static, quasi-static or cyclic loadings). The influence of graphite nodules on the damaging micromechanisms is not univocally identified. Some authors proposed to consider the graphite nodules as voids embedded in a more or less ductile matrix; other authors recently proposed a more complex contribution of the graphite nodules, suggesting a mechanical properties gradient inside the graphite nodules, with the graphite elements – matrix debonding as only one of the possible damaging micromechanisms. In this work, three different ferritic-pearlitic DCIs were investigated, focusing the damaging micromechanisms due to overloads applied on fatigue cracked Compact Type specimens. Scanning Electron Microscope (SEM) and Digital Microscope (DM) observations were performed on the lateral surfaces of the overloaded specimens following a step by step procedure: SEM observations were mainly focused on the damaging mechanisms in graphite nodules; DM observations were mainly focused on the damaging mechanisms in the ferritic-pearlitic matrix.

Overload effects on fatigue cracks in ferritic-pearlitic ductile cast irons

D'AGOSTINO, Laura;DI COCCO, Vittorio;IACOVIELLO, Francesco
2016-01-01

Abstract

Matrix microstructure (e.g., phases volume fraction, grains size and grain distribution) and graphite nodules morphology peculiarities (e.g., nodularity level, dimension, distribution etc.) strongly affect the mechanical behavior and damaging micromechanisms in Ductile Cast Irons (DCIs). Concerning the influence of the graphite nodules, it depends both on the matrix microstructure and the loading conditions (e.g., static, quasi-static or cyclic loadings). The influence of graphite nodules on the damaging micromechanisms is not univocally identified. Some authors proposed to consider the graphite nodules as voids embedded in a more or less ductile matrix; other authors recently proposed a more complex contribution of the graphite nodules, suggesting a mechanical properties gradient inside the graphite nodules, with the graphite elements – matrix debonding as only one of the possible damaging micromechanisms. In this work, three different ferritic-pearlitic DCIs were investigated, focusing the damaging micromechanisms due to overloads applied on fatigue cracked Compact Type specimens. Scanning Electron Microscope (SEM) and Digital Microscope (DM) observations were performed on the lateral surfaces of the overloaded specimens following a step by step procedure: SEM observations were mainly focused on the damaging mechanisms in graphite nodules; DM observations were mainly focused on the damaging mechanisms in the ferritic-pearlitic matrix.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/55998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact