In this paper, we applied the differential interferometric synthetic aperture radar (DInSAR) technique to investigate and measure surface displacements due to the 5.3 ( 5.2), June 21, 2013 earthquake, occurred north of the Apuan Alps (NW Italy), in the discontinuity zone between the Lunigiana and Garfagnana area. Two differential interferograms showing the coseismic displacement have been generated using X-band and C-band data, taken from COSMO-SkyMed and RADARSAT-2 satellites, respectively. Both interferograms highlighted a clear pattern of subsidence of few cm located between the Lunigiana and Garfagnana basins. We then modeled the observed SAR deformation fields using the Okada analytical formulation and found them to be consistent with an extensional fault plane dipping toward NW at about 50 . The integrated analysis of DInSAR, geological data, modeling, and historical seismicity suggest that the fault responsible for the June 2013 earthquake corresponds to a breached relay ramp connecting the Lunigiana and Garfagnana seismogenic sources. Index Terms—Earthquakes, inversion modeling, normal

X- and C-band SAR surface displacement for the 2013 Lunigiana earthquake (Northern Italy): a breached relay ramp?

SAROLI, Michele
2014-01-01

Abstract

In this paper, we applied the differential interferometric synthetic aperture radar (DInSAR) technique to investigate and measure surface displacements due to the 5.3 ( 5.2), June 21, 2013 earthquake, occurred north of the Apuan Alps (NW Italy), in the discontinuity zone between the Lunigiana and Garfagnana area. Two differential interferograms showing the coseismic displacement have been generated using X-band and C-band data, taken from COSMO-SkyMed and RADARSAT-2 satellites, respectively. Both interferograms highlighted a clear pattern of subsidence of few cm located between the Lunigiana and Garfagnana basins. We then modeled the observed SAR deformation fields using the Okada analytical formulation and found them to be consistent with an extensional fault plane dipping toward NW at about 50 . The integrated analysis of DInSAR, geological data, modeling, and historical seismicity suggest that the fault responsible for the June 2013 earthquake corresponds to a breached relay ramp connecting the Lunigiana and Garfagnana seismogenic sources. Index Terms—Earthquakes, inversion modeling, normal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/36577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
social impact