In this paper, using Pontryagin’s maximum principle, we study the asymptotic behaviour of a parabolic optimal control problem in a domain Ωε⊂Rn, whose boundary ∂Ωε contains a highly oscillating part. On this part we consider a homogeneous Neumann boundary condition. We identify the limit problem, which is an optimal control problem for the limit equation. Moreover, we explicitly remark that both limit state equation and limit cost are different from those ones at ε -level.

Optimal control problem for an anisotropic parabolic problem in a domain with very rough boundary

FAELLA, Luisa;
2014-01-01

Abstract

In this paper, using Pontryagin’s maximum principle, we study the asymptotic behaviour of a parabolic optimal control problem in a domain Ωε⊂Rn, whose boundary ∂Ωε contains a highly oscillating part. On this part we consider a homogeneous Neumann boundary condition. We identify the limit problem, which is an optimal control problem for the limit equation. Moreover, we explicitly remark that both limit state equation and limit cost are different from those ones at ε -level.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/36575
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact