Most of the traditional wave energy converters are of a single oscillation structure, which leads to difficulties in sealing and installation. Based on the technological status of disc-type permanent magnetic coreless generator (DPMCLG) and long-stroke tape-type spring, a small scale wave energy extracting structure which can be completely sealed and work under the principle of double oscillation is proposed in this paper. By building a double oscillating model of the structure, the time domain differential equations and an equivalent circuit scheme are drawn, from which a phase-space solution by phase method is derived. Based on the solution, the performance of the structure is compared with that of single oscillating structure. The conclusion is that the double oscillating structure has a wider period range and higher power response for wave extraction, as well as the protection of power generator from damage in storm conditions.

Performance Analysis of a Completely Sealed Double Oscillating Structure Applied in Wave Energy Extraction

MARIGNETTI, Fabrizio
2013-01-01

Abstract

Most of the traditional wave energy converters are of a single oscillation structure, which leads to difficulties in sealing and installation. Based on the technological status of disc-type permanent magnetic coreless generator (DPMCLG) and long-stroke tape-type spring, a small scale wave energy extracting structure which can be completely sealed and work under the principle of double oscillation is proposed in this paper. By building a double oscillating model of the structure, the time domain differential equations and an equivalent circuit scheme are drawn, from which a phase-space solution by phase method is derived. Based on the solution, the performance of the structure is compared with that of single oscillating structure. The conclusion is that the double oscillating structure has a wider period range and higher power response for wave extraction, as well as the protection of power generator from damage in storm conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/28031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact