Nanowire-based circuits are candidates for future high-speed electronics. Signal propagation in nanowires can be studied by combining the semiclassical Boltzmann transport theory to the classical transmission line theory. In this paper, we apply this approach tomodel the signal propagation in graphene nanoribbon (GNR) interconnects. We express the kinetic inductance and the quantum capacitance in terms of the number of effective conducting channels. We study in detail the behavior of the number of effective conducting channels for both the armchair and zig-zag GNRs as their widths vary. This number is computed rigorously, taking into account the actual distribution of the energy spectrum and of the velocity of the conduction electrons. We found that the expressions for the number of conducting channels proposed in the literature give a significant overestimation of its values.

Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects

MAFFUCCI, Antonio;
2013-01-01

Abstract

Nanowire-based circuits are candidates for future high-speed electronics. Signal propagation in nanowires can be studied by combining the semiclassical Boltzmann transport theory to the classical transmission line theory. In this paper, we apply this approach tomodel the signal propagation in graphene nanoribbon (GNR) interconnects. We express the kinetic inductance and the quantum capacitance in terms of the number of effective conducting channels. We study in detail the behavior of the number of effective conducting channels for both the armchair and zig-zag GNRs as their widths vary. This number is computed rigorously, taking into account the actual distribution of the energy spectrum and of the velocity of the conduction electrons. We found that the expressions for the number of conducting channels proposed in the literature give a significant overestimation of its values.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/27778
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
social impact