We show that the singularities which can affect the computation of the gravity effects (potential, gravity and tensor gradient fields) can be systematically addressed by invoking distribution theory and suitable formulas of differential calculus. Thus, differently from previous contributions on the subject, the use of a-posteriori corrections of the formulas derived in absence of singularities can be ruled out. The general approach presented in the paper is further specialized to the case of polyhedral bodies and detailed for a rectangular prism having a constant mass density. With reference to this last case, we derive novel expressions for the related gravitational field, as well as for its first and second derivative, at an observation point coincident with a prism vertex and show that they turn out to be more compact than the ones reported in the specialized literature. © 2012 Springer-Verlag Berlin Heidelberg.

On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities

D'URSO, Maria Grazia
2013

Abstract

We show that the singularities which can affect the computation of the gravity effects (potential, gravity and tensor gradient fields) can be systematically addressed by invoking distribution theory and suitable formulas of differential calculus. Thus, differently from previous contributions on the subject, the use of a-posteriori corrections of the formulas derived in absence of singularities can be ruled out. The general approach presented in the paper is further specialized to the case of polyhedral bodies and detailed for a rectangular prism having a constant mass density. With reference to this last case, we derive novel expressions for the related gravitational field, as well as for its first and second derivative, at an observation point coincident with a prism vertex and show that they turn out to be more compact than the ones reported in the specialized literature. © 2012 Springer-Verlag Berlin Heidelberg.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11580/23430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
social impact