The paper proposes the use of a suitable multi-frequency approach applied to a novel instrument for eddy current non-destructive testing on conductive materials. The instrument is composed by a smart eddy current probe, based on a Giant Magneto Resistance sensor, and by a suitable processing unit. Key features of the proposed instrument are the capability of detecting, locating, and characterizing thin defects such as superficial and sub-superficial cracks. The proposed multi-frequency solution, together with a suitable data processing, allow both the sensitivity in the defect detection to be increased and the ability to evaluate the defect characteristics in terms of shape and dimension to be improved.

Multi-Frequency Eddy Current Testing using a GMR Based Instrument

BERNIERI, Andrea;BETTA, Giovanni;FERRIGNO, Luigi;LARACCA, Marco
2012-01-01

Abstract

The paper proposes the use of a suitable multi-frequency approach applied to a novel instrument for eddy current non-destructive testing on conductive materials. The instrument is composed by a smart eddy current probe, based on a Giant Magneto Resistance sensor, and by a suitable processing unit. Key features of the proposed instrument are the capability of detecting, locating, and characterizing thin defects such as superficial and sub-superficial cracks. The proposed multi-frequency solution, together with a suitable data processing, allow both the sensitivity in the defect detection to be increased and the ability to evaluate the defect characteristics in terms of shape and dimension to be improved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/21485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
social impact