A compartmental epidemic model, introduced by Gumel and Moghadas [1], is considered. The model incorporates a nonlinear incidence rate and an imperfect preventive vaccine given to susceptible individuals. A bifurcation analysis is performed by applying the bifurcation method introduced in [2], which is based on the use of the center manifold theory. Conditions ensuring the occurrence of backward bifurcation are derived. The obtained results are numerically validated and then discussed from both the mathematical and the epidemiological perspective.
On the backward bifurcation of a vaccination model with non-linear incidence
LACITIGNOLA, Deborah
2011-01-01
Abstract
A compartmental epidemic model, introduced by Gumel and Moghadas [1], is considered. The model incorporates a nonlinear incidence rate and an imperfect preventive vaccine given to susceptible individuals. A bifurcation analysis is performed by applying the bifurcation method introduced in [2], which is based on the use of the center manifold theory. Conditions ensuring the occurrence of backward bifurcation are derived. The obtained results are numerically validated and then discussed from both the mathematical and the epidemiological perspective.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.