The results of some 60 tests performed in Italy on 2”, 4”, 6” and 8” pipes of A 106 B and 304 stainless steel, carrying circumferential through-wall cracks of various size under four point bending conditions (FPB), at room temperature and 300° C, have been analyzed using the Net Section Collapse Moment Criterion (NSCM) and the dimensionless plastic zone parameter (DPZP). Most of the test results have shown that the NSCM applies even though the DPZP is lower than unity. This apparent inconsistency is due to the fact that cracked pipes under bending fail by plastic hinge formation of the type occurring in FPB specimens carrying notches, like the Charpy VN ones, as predicted by the slip line theory. Under these conditions, two half circle plastic zones develop at both sides of the notch while the plastic zone straight ahead the notch tip is almost negligible. FE Calculations have confirmed this behavior: the plastic zone underneath the crack tip has not yet reached the neutral axis when the plastic hinge is formed on the sides of the piping, making the NSCM applicable. This, actually, implies that the DPZP as presently used in the screening criteria is not precisely the proper parameter to adopt in the assessment of the NSCM criterion applicability.
Failure Mode of Pipes Containing Circumferential Cracks Under Bending and its Consequence on the Application of NSCM Criterion
BONORA, Nicola;GENTILE, Domenico;
2003-01-01
Abstract
The results of some 60 tests performed in Italy on 2”, 4”, 6” and 8” pipes of A 106 B and 304 stainless steel, carrying circumferential through-wall cracks of various size under four point bending conditions (FPB), at room temperature and 300° C, have been analyzed using the Net Section Collapse Moment Criterion (NSCM) and the dimensionless plastic zone parameter (DPZP). Most of the test results have shown that the NSCM applies even though the DPZP is lower than unity. This apparent inconsistency is due to the fact that cracked pipes under bending fail by plastic hinge formation of the type occurring in FPB specimens carrying notches, like the Charpy VN ones, as predicted by the slip line theory. Under these conditions, two half circle plastic zones develop at both sides of the notch while the plastic zone straight ahead the notch tip is almost negligible. FE Calculations have confirmed this behavior: the plastic zone underneath the crack tip has not yet reached the neutral axis when the plastic hinge is formed on the sides of the piping, making the NSCM applicable. This, actually, implies that the DPZP as presently used in the screening criteria is not precisely the proper parameter to adopt in the assessment of the NSCM criterion applicability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.