Artificial Olfaction (AO) data analysts have gained long term experience on nervous system based machine learning metaphors such as Artificial Neural Networks. In this work we propose and evaluate the use of a novel tool based on an emerging, however, powerful metaphor: the Artificial Immune Systems (AIS). AIS models were developed in the `90s; ever since they have reached significant maturity, and were to show good performance in both explorative data analysis and classification tasks. After selecting different artificial olfaction databases, we compare the utility of classic Back-Propagation Neural Network (BPNN) models with Artificial Immune Recognition Systems (AIRS) algorithms for classification problems, discussing its architectural strengths and weaknesses. Although BPNN retained a slight performance advantage on the investigated datasets, we were able to show that the AIS metaphor can express interesting characteristics for artificial olfaction data analysis. As an example, in a preliminary setup, the AIRS classifier showed superior performance when the sensor signals are affected by drift.
Artificial immune systems for Artificial Olfaction data analysis: Comparison between AIRS and ANN models
DE VITO, SAVERIO;TORTORELLA, Francesco;
2010-01-01
Abstract
Artificial Olfaction (AO) data analysts have gained long term experience on nervous system based machine learning metaphors such as Artificial Neural Networks. In this work we propose and evaluate the use of a novel tool based on an emerging, however, powerful metaphor: the Artificial Immune Systems (AIS). AIS models were developed in the `90s; ever since they have reached significant maturity, and were to show good performance in both explorative data analysis and classification tasks. After selecting different artificial olfaction databases, we compare the utility of classic Back-Propagation Neural Network (BPNN) models with Artificial Immune Recognition Systems (AIRS) algorithms for classification problems, discussing its architectural strengths and weaknesses. Although BPNN retained a slight performance advantage on the investigated datasets, we were able to show that the AIS metaphor can express interesting characteristics for artificial olfaction data analysis. As an example, in a preliminary setup, the AIRS classifier showed superior performance when the sensor signals are affected by drift.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.