Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [artificial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks confirmed the suitability of the proposed approach for defect characterization.

Crack Shape Reconstruction in Eddy Current Testing using Machine Learning Systems for Regression

BERNIERI, Andrea;FERRIGNO, Luigi;LARACCA, Marco;MOLINARA, Mario
2008-01-01

Abstract

Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [artificial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks confirmed the suitability of the proposed approach for defect characterization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/13206
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 123
social impact