An instrument for nondestructive testing in industrial environments was designed, set up, and tested. It uses fluxset magnetic sensors and is based on dedicated boards suitably set up to optimize system performances with no loss in flexibility. A self-calibration and adjustment capability was implemented, thus allowing the instrument to operate optimally in different environments. A fast Fourier transform-based algorithm was used for both probe adjustment and measurement postprocessing. The assembled instrument was then tested on specimens with known cracks, showing a very good agreement between theoretical and experimental results.

An Automated Self-calibrated Instrument for Nondestructive Testing on Conductive Materials

BERNIERI, Andrea;BETTA, Giovanni;FERRIGNO, Luigi;LARACCA, Marco
2004-01-01

Abstract

An instrument for nondestructive testing in industrial environments was designed, set up, and tested. It uses fluxset magnetic sensors and is based on dedicated boards suitably set up to optimize system performances with no loss in flexibility. A self-calibration and adjustment capability was implemented, thus allowing the instrument to operate optimally in different environments. A fast Fourier transform-based algorithm was used for both probe adjustment and measurement postprocessing. The assembled instrument was then tested on specimens with known cracks, showing a very good agreement between theoretical and experimental results.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/13019
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact