Historic floors, including mosaics, stone slabs, and decorated pavements, are fragile elements that can be easily damaged during restoration works. Risks arise from falling tools, concentrated loads of scaffolding or equipment, and the repeated passage of workers. Traditional protection methods, such as plywood sheets, mats, multilayer systems, or modular plastic panels, have been applied in different sites but often present limitations in adaptability to irregular surfaces, in moisture control, and in long-term reversibility. This paper introduces an innovative approach developed within the 3D-EcoCore project. The proposed solution consists of a bio-inspired modular sandwich system manufactured by 3D printing with biodegradable polymers. Each module contains a Voronoi-inspired cellular core, shaped to match the geometry of the floor obtained from digital surveys, and an upper flat skin that provides a safe and resistant surface. The design ensures mechanical protection, adaptability to uneven pavements, and the possibility to integrate ventilation gaps, cable pathways, and monitoring systems. Beyond heritage interventions, the system also supports routine architectural maintenance by enabling safe, reversible protection during inspections and minor repairs. The solution is strictly temporary and non-substitutive, fully aligned with conservation principles of reversibility, recognizability, and minimal intervention. The Ninfeo Ponari in Cassino is presented as a guiding example, showing how multilevel knowledge and thematic mapping become essential inputs for the tailored design of the modules. The paper highlights both the technical innovation of the system and the methodological contribution of a knowledge-based design process, opening future perspectives for durability assessment, pilot installations, and the integration of artificial intelligence to optimise core configurations.
Bio-Inspired 3D-Printed Modular System for Protection of Historic Floors: From Multilevel Knowledge to a Customized Solution
Ernesto Grande
;Maura ImbimboConceptualization
;Assunta PelliccioConceptualization
;Valentina TomeiInvestigation
2025-01-01
Abstract
Historic floors, including mosaics, stone slabs, and decorated pavements, are fragile elements that can be easily damaged during restoration works. Risks arise from falling tools, concentrated loads of scaffolding or equipment, and the repeated passage of workers. Traditional protection methods, such as plywood sheets, mats, multilayer systems, or modular plastic panels, have been applied in different sites but often present limitations in adaptability to irregular surfaces, in moisture control, and in long-term reversibility. This paper introduces an innovative approach developed within the 3D-EcoCore project. The proposed solution consists of a bio-inspired modular sandwich system manufactured by 3D printing with biodegradable polymers. Each module contains a Voronoi-inspired cellular core, shaped to match the geometry of the floor obtained from digital surveys, and an upper flat skin that provides a safe and resistant surface. The design ensures mechanical protection, adaptability to uneven pavements, and the possibility to integrate ventilation gaps, cable pathways, and monitoring systems. Beyond heritage interventions, the system also supports routine architectural maintenance by enabling safe, reversible protection during inspections and minor repairs. The solution is strictly temporary and non-substitutive, fully aligned with conservation principles of reversibility, recognizability, and minimal intervention. The Ninfeo Ponari in Cassino is presented as a guiding example, showing how multilevel knowledge and thematic mapping become essential inputs for the tailored design of the modules. The paper highlights both the technical innovation of the system and the methodological contribution of a knowledge-based design process, opening future perspectives for durability assessment, pilot installations, and the integration of artificial intelligence to optimise core configurations.| File | Dimensione | Formato | |
|---|---|---|---|
|
3D_Ecocore_heritage-08-00450.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
13.54 MB
Formato
Adobe PDF
|
13.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

