In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators (DGs) among network users has significantly contributed to reducing the overall load of the electrical system, but at the cost of making voltages slightly more unbalanced. In this article, an LV distribution test network equipped with several single-phase DGs has been considered, and all During-Fault Voltages (DFVs) have been studied, according to each possible type of short circuit. To provide a measure of the asymmetry of unsymmetrical voltage dips, three different indices based on the symmetrical components of the voltages have been considered; moreover, the Monte Carlo simulation (MCS) method has allowed for studying faults and asymmetries in a probabilistic manner. Through the probability density functions (pdfs) of the DFVs, it has been possible to assess the impact of single-phase DGs on the asymmetry of bus voltages due to short-circuits.
Probabilistic Estimation of During-Fault Voltages of Unbalanced Active Distribution: Methods and Tools
Varilone P.;Verde P.
2025-01-01
Abstract
In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators (DGs) among network users has significantly contributed to reducing the overall load of the electrical system, but at the cost of making voltages slightly more unbalanced. In this article, an LV distribution test network equipped with several single-phase DGs has been considered, and all During-Fault Voltages (DFVs) have been studied, according to each possible type of short circuit. To provide a measure of the asymmetry of unsymmetrical voltage dips, three different indices based on the symmetrical components of the voltages have been considered; moreover, the Monte Carlo simulation (MCS) method has allowed for studying faults and asymmetries in a probabilistic manner. Through the probability density functions (pdfs) of the DFVs, it has been possible to assess the impact of single-phase DGs on the asymmetry of bus voltages due to short-circuits.| File | Dimensione | Formato | |
|---|---|---|---|
|
energies-18-04791 (1).pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

