In this work, we consider the problem of designing space-time-frequency linear dispersion (LD) codes in wideband multiple-input multiple-output (MIMO) antenna systems employing orthogonal-frequency-division-multiplexing (OFDM). Three criteria are presented and discussed in detail, which involve: 1) minimizing the average uncoded block error rate, 2) maximizing the ergodic mutual information, and 3) a two-step procedure considering the optimization of the ergodic mutual information as well as the average uncoded block error rate, respectively. For any set of subcarriers, any number of OFDM symbol intervals, any number of transmit/receive antennas and any statistical fading channel model, the corresponding optimized LD code matrices are numerically computed via a stochastic gradient descent algorithm assuming either maximum likelihood or linear zero-forcing decoding. As an application of the proposed criteria, code design examples are presented for practical next-generation communication systems which operate over a realistic 3GPP spatial channel model. The robustness of the resulting codes over several operating conditions is comprehensively demonstrated via numerical simulations.

Design of linear dispersion codes for practical MIMO-OFDM systems

VENTURINO, Luca;
2007-01-01

Abstract

In this work, we consider the problem of designing space-time-frequency linear dispersion (LD) codes in wideband multiple-input multiple-output (MIMO) antenna systems employing orthogonal-frequency-division-multiplexing (OFDM). Three criteria are presented and discussed in detail, which involve: 1) minimizing the average uncoded block error rate, 2) maximizing the ergodic mutual information, and 3) a two-step procedure considering the optimization of the ergodic mutual information as well as the average uncoded block error rate, respectively. For any set of subcarriers, any number of OFDM symbol intervals, any number of transmit/receive antennas and any statistical fading channel model, the corresponding optimized LD code matrices are numerically computed via a stochastic gradient descent algorithm assuming either maximum likelihood or linear zero-forcing decoding. As an application of the proposed criteria, code design examples are presented for practical next-generation communication systems which operate over a realistic 3GPP spatial channel model. The robustness of the resulting codes over several operating conditions is comprehensively demonstrated via numerical simulations.
File in questo prodotto:
File Dimensione Formato  
Design_of_Linear_Dispersion_Codes_for_Practical_MIMO-OFDM_Systems.pdf

solo utenti autorizzati

Descrizione: Documento Principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/11883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact