Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. Our high-resolution stereoscopic analysis reveals distinctive landforms, including sharp-edged polyhedra, chevron patterns, and en-echelon open fractures, indicative of plastic glacial deformation. Current climatic conditions may support year-round ice stability, while sharp-edged polyhedra, open fractures, and the absence of superposed craters suggest active glaciation. The Ariguani delta system lacks fluvial signatures but aligns with glacial erosional and depositional processes. Unlike terrestrial glaciers, ice accumulation here is likely driven by escarpment-fed melt from seasonal permafrost thawing under lithostatic pressure, generating neo-glacial flows that sustain the glacial tongue. This mechanism can also explain regional features, including U-shaped valley subsidence, gravitational slides, flow of low-viscosity material lobes, and ring-mold craters. Thus, we propose sharp-edged polyhedra as diagnostic markers for identifying ongoing ice dynamics on Mars, enabling future automated detection of active glacial environments.
Geomorphological Evidence of Ice Activity on Mars Surface at Mid-Latitudes
Matteo AlbanoConceptualization
;Michele SaroliMethodology
;Nicola BonoraSupervision
2025-01-01
Abstract
Extensive radar investigations, observed spectral signatures, geomorphological, and paleoclimate modeling support the presence of mid- to low-latitude ground ice on Mars. The presence of near-surface ice and glacial features has been proposed in Ismenius Lacus, but the ice composition and age remain unconstrained. Our high-resolution stereoscopic analysis reveals distinctive landforms, including sharp-edged polyhedra, chevron patterns, and en-echelon open fractures, indicative of plastic glacial deformation. Current climatic conditions may support year-round ice stability, while sharp-edged polyhedra, open fractures, and the absence of superposed craters suggest active glaciation. The Ariguani delta system lacks fluvial signatures but aligns with glacial erosional and depositional processes. Unlike terrestrial glaciers, ice accumulation here is likely driven by escarpment-fed melt from seasonal permafrost thawing under lithostatic pressure, generating neo-glacial flows that sustain the glacial tongue. This mechanism can also explain regional features, including U-shaped valley subsidence, gravitational slides, flow of low-viscosity material lobes, and ring-mold craters. Thus, we propose sharp-edged polyhedra as diagnostic markers for identifying ongoing ice dynamics on Mars, enabling future automated detection of active glacial environments.| File | Dimensione | Formato | |
|---|---|---|---|
|
Moro et al. Saroli 2025_RS_Marte_br.pdf
accesso aperto
Descrizione: Moro et al. Saroli 2025_RS_Marte_br
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
4 MB
Formato
Adobe PDF
|
4 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

