Although it is often said that diffusional flow creep is out of the practical engineering applications, the need for a unified model capable to account for the resulting action of both diffusional and dislocation type creep is justified by the increasing demands of reliable creep design for very long lives (exceeding 100.000h), high stress-low temperatures and high temperature-low stress regimes. In this paper, a unified creep model formulation, in which the change of the creep mechanism has been accounted for through an explicit dependence of the exponent n on stress and temperature, has been proposed. The model has been also extended incorporating damage processes, characteristics of creep stage IV, adopting a time independent damage formulation proposed by the authors. An application example of the proposed approach to high purity aluminum is given
MECHANISM BASED UNIFIED CREEP MODEL INCORPORATING DAMAGE
BONORA, Nicola;
2008-01-01
Abstract
Although it is often said that diffusional flow creep is out of the practical engineering applications, the need for a unified model capable to account for the resulting action of both diffusional and dislocation type creep is justified by the increasing demands of reliable creep design for very long lives (exceeding 100.000h), high stress-low temperatures and high temperature-low stress regimes. In this paper, a unified creep model formulation, in which the change of the creep mechanism has been accounted for through an explicit dependence of the exponent n on stress and temperature, has been proposed. The model has been also extended incorporating damage processes, characteristics of creep stage IV, adopting a time independent damage formulation proposed by the authors. An application example of the proposed approach to high purity aluminum is givenI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.