The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmental and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e., co-precipitation and impregnation. The catalytic performance of the differently prepared samples was significantly influenced by the molybdenum incorporation method and the zirconium content within the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better structural attributes but slightly lower catalytic activity compared to those prepared via impregnation. Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when using the impregnation method.
Compositional and Fabrication Cycle Optimization of Ceria-Zirconia-Supported Mo-Based Catalysts for NH3-SCR NOx Reduction
Spiridigliozzi, Luca
Conceptualization
;Monfreda, VivianaInvestigation
;Esposito, SerenaConceptualization
;Dell'Agli, Gianfranco
Supervision
2024-01-01
Abstract
The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmental and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e., co-precipitation and impregnation. The catalytic performance of the differently prepared samples was significantly influenced by the molybdenum incorporation method and the zirconium content within the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better structural attributes but slightly lower catalytic activity compared to those prepared via impregnation. Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when using the impregnation method.File | Dimensione | Formato | |
---|---|---|---|
2024_Inorganics.pdf
accesso aperto
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.