Different commercial Finite Element Codes proved to be able to describe the mechanical behavior of masonry materials externally reinforced by means of Carbon Fiber Reinforced Polymers (CFRP); the behavior of fracturing materials, characterized by low tensile strength, with adhered strips can be reproduced relying on parameters based on fracture mechanics and the theories of adhesion. In this report the comparison is made of previous experimental test results with numerical analysis, carried out on masonry panels reinforced with CFRP strips and subjected to out of plane actions. The comparison is especially addressed to the evaluation of the post peak branch; in addition to the slopes of the diagram in the pre-critic phase, available kinematic ductility and energy shares both prior and after the peak load were considered in order to interpret the capability of the micro-mechanical model implemented in the FEM Code to account for the local phenomena influencing the interaction between masonry and FRP strengthening systems.

Predictive Capability of a Finite Element Micro-Mechanical Model for Masonry Elements Reinforced Using CFRP

Grande E.
2022-01-01

Abstract

Different commercial Finite Element Codes proved to be able to describe the mechanical behavior of masonry materials externally reinforced by means of Carbon Fiber Reinforced Polymers (CFRP); the behavior of fracturing materials, characterized by low tensile strength, with adhered strips can be reproduced relying on parameters based on fracture mechanics and the theories of adhesion. In this report the comparison is made of previous experimental test results with numerical analysis, carried out on masonry panels reinforced with CFRP strips and subjected to out of plane actions. The comparison is especially addressed to the evaluation of the post peak branch; in addition to the slopes of the diagram in the pre-critic phase, available kinematic ductility and energy shares both prior and after the peak load were considered in order to interpret the capability of the micro-mechanical model implemented in the FEM Code to account for the local phenomena influencing the interaction between masonry and FRP strengthening systems.
File in questo prodotto:
File Dimensione Formato  
Predictive_Capability_of_a_Finite_Element_Micro-Me.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/109070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact