The use of Mt. Epomeo Green Tuff (MEGT) as a building stone is widespread on Ischia Island (Italy). We assess here the fire resistance of MEGT by thermally stressing samples to temperatures up to 1000 °C. Porosity and uniaxial compressive strength increase and decrease from 44% and 4.5 MPa at ambient temperature to 48% and 1.5 MPa following exposure to 1000 °C, respectively. Complementary thermogravimetric and X-ray powder diffraction analyses, experiments that monitor acoustic emissions during heating/cooling, and microstructural observations highlight that these changes are the result of thermal microcracks, formed due to the breakdown of zeolites and clays (MEGT contains 35 wt.% analcime, 15 wt.% smectite, and 3 wt.% illite) at high temperature. Although the stability of structures built from MEGT will be jeopardised at high temperature, a very low thermal diffusivity requires that fires must burn for many hours to compromise the strength of a typical dimension stone: tuffs are tough in the event of fire.
Fire resistance of the Mt. Epomeo Green Tuff, a widely-used building stone on Ischia Island (Italy)
Fiorucci, Matteo;
2018-01-01
Abstract
The use of Mt. Epomeo Green Tuff (MEGT) as a building stone is widespread on Ischia Island (Italy). We assess here the fire resistance of MEGT by thermally stressing samples to temperatures up to 1000 °C. Porosity and uniaxial compressive strength increase and decrease from 44% and 4.5 MPa at ambient temperature to 48% and 1.5 MPa following exposure to 1000 °C, respectively. Complementary thermogravimetric and X-ray powder diffraction analyses, experiments that monitor acoustic emissions during heating/cooling, and microstructural observations highlight that these changes are the result of thermal microcracks, formed due to the breakdown of zeolites and clays (MEGT contains 35 wt.% analcime, 15 wt.% smectite, and 3 wt.% illite) at high temperature. Although the stability of structures built from MEGT will be jeopardised at high temperature, a very low thermal diffusivity requires that fires must burn for many hours to compromise the strength of a typical dimension stone: tuffs are tough in the event of fire.File | Dimensione | Formato | |
---|---|---|---|
Heap_et_al_2018_Volcanica.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
9.26 MB
Formato
Adobe PDF
|
9.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.