which cause interactions among the control loops of Distributed Energy Resources (DERs). This undesired effect leads to performance degradation of voltage control. To mitigate the effects of this unavoidable coupling, the present paper proposes a systematic design procedure based on the analysis of the interaction’s sources. In detail, each DER is equipped with a double-loop PI to control the active and reactive power output of the voltage source converter, which connects the DER to the network’s node. Furthermore, to guarantee ancillary services, the two loops are coupled by a simple mechanism of cooperation of the active power to voltage regulation realized by a filtered droop law. To achieve voltage regulation with reduced loop interactions, the PI parameters and the filter’s pulse are designed according to a procedure with two sequential steps based on the Internal Model Control (IMC) technique. Simulation studies are finally presented to demonstrate that the proposed design method achieves both reduction of the loop interaction and robust voltage control in the presence of model parameter uncertainty in the MIMO plant, modeling various operating conditions of the ADN, including a step connection of large loads, renewable energy source variations, and changes in the substation transformer ratio.
Local DER Control with Reduced Loop Interactions in Active Distribution Networks
Fusco, Giuseppe;Russo, Mario
2024-01-01
Abstract
which cause interactions among the control loops of Distributed Energy Resources (DERs). This undesired effect leads to performance degradation of voltage control. To mitigate the effects of this unavoidable coupling, the present paper proposes a systematic design procedure based on the analysis of the interaction’s sources. In detail, each DER is equipped with a double-loop PI to control the active and reactive power output of the voltage source converter, which connects the DER to the network’s node. Furthermore, to guarantee ancillary services, the two loops are coupled by a simple mechanism of cooperation of the active power to voltage regulation realized by a filtered droop law. To achieve voltage regulation with reduced loop interactions, the PI parameters and the filter’s pulse are designed according to a procedure with two sequential steps based on the Internal Model Control (IMC) technique. Simulation studies are finally presented to demonstrate that the proposed design method achieves both reduction of the loop interaction and robust voltage control in the presence of model parameter uncertainty in the MIMO plant, modeling various operating conditions of the ADN, including a step connection of large loads, renewable energy source variations, and changes in the substation transformer ratio.File | Dimensione | Formato | |
---|---|---|---|
Energies interazione 2024.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
992.14 kB
Formato
Adobe PDF
|
992.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.