This paper proposes a methodology for user-tailored orthosis design for 3D printing that aims to give a non-expert, user-oriented tool that easily generates a customized orthosis. Additionally, this work aims to verify the biocompatibility of the PLACTIVE™ (PLACTIVE AN1™, nano-additive concentration 1%, Copper 3D, Santiago, Chile) filament after extrusion to check its feasibility for 3D printed orthoses. A forefinger and a thumb orthosis were successfully designed applying the proposed methodology. The results showed that the proposed methodology is able to generate simple and practical orthoses through a fairly easy and intuitive procedure. Furthermore, experimental tests showed that the biocompatibility of the PLACTIVE™ filament is not affected after extrusion process, suggesting that it is a feasible material for 3D-printed orthoses.

User-tailored orthosis design for 3d printing with plactive: A quick methodology

Katiuscia Martinello;Daniele Cafolla
2021-01-01

Abstract

This paper proposes a methodology for user-tailored orthosis design for 3D printing that aims to give a non-expert, user-oriented tool that easily generates a customized orthosis. Additionally, this work aims to verify the biocompatibility of the PLACTIVE™ (PLACTIVE AN1™, nano-additive concentration 1%, Copper 3D, Santiago, Chile) filament after extrusion to check its feasibility for 3D printed orthoses. A forefinger and a thumb orthosis were successfully designed applying the proposed methodology. The results showed that the proposed methodology is able to generate simple and practical orthoses through a fairly easy and intuitive procedure. Furthermore, experimental tests showed that the biocompatibility of the PLACTIVE™ filament is not affected after extrusion process, suggesting that it is a feasible material for 3D-printed orthoses.
File in questo prodotto:
File Dimensione Formato  
crystals-11-00561-v2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.6 MB
Formato Adobe PDF
5.6 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/106193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact