Electric vehicles have gained considerable attention recently due to the ever increasing demand for a viable alternative to the current fossil fuel-dependent modes of transportation. These automobiles are reliant on power electronics to generate the energy required for the motor. Traditional converters, namely the V-source (VS) and C-source (CS), are vulnerable to EMI noise, their main circuits cannot be interchangeable and they are either a boost or a buck converter. Therefore, their output voltage is strictly higher or lower than the input voltage. In an effort to negate these drawbacks, new inverters such as the Z-source were conceptualized. This work aims to study the applicability of the Zsource in the traction chain of an electric vehicle in order to feed a permanent magnet synchronous motor (PMSM). The latter is controlled with field oriented vector control reinforced with a backstepping technique in an attempt to ensure tracking ability and robustness. Energy management is also supported in this article in an effort to optimize the performance of the electric vehicle under different operating conditions. The simulation results show the effectiveness of the proposed system in enhancing the energy management of the vehicle, in addition to its simplicity which can facilitate an eventual implementation using a DSP or a Dspace platform.

Z-Source Inverter for Energy Management and Vector Control for Electric Vehicle Based PMSM

Marignetti, Fabrizio
2020-01-01

Abstract

Electric vehicles have gained considerable attention recently due to the ever increasing demand for a viable alternative to the current fossil fuel-dependent modes of transportation. These automobiles are reliant on power electronics to generate the energy required for the motor. Traditional converters, namely the V-source (VS) and C-source (CS), are vulnerable to EMI noise, their main circuits cannot be interchangeable and they are either a boost or a buck converter. Therefore, their output voltage is strictly higher or lower than the input voltage. In an effort to negate these drawbacks, new inverters such as the Z-source were conceptualized. This work aims to study the applicability of the Zsource in the traction chain of an electric vehicle in order to feed a permanent magnet synchronous motor (PMSM). The latter is controlled with field oriented vector control reinforced with a backstepping technique in an attempt to ensure tracking ability and robustness. Energy management is also supported in this article in an effort to optimize the performance of the electric vehicle under different operating conditions. The simulation results show the effectiveness of the proposed system in enhancing the energy management of the vehicle, in addition to its simplicity which can facilitate an eventual implementation using a DSP or a Dspace platform.
File in questo prodotto:
File Dimensione Formato  
Z-Source Inverter for Energy Management and Vector Control for Electric Vehicle Based PMSM.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/105447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact