We present here some corrector results for the homogenization of the wave equation in a two-component composite with epsilon-periodic connected inclusions. On the interface separating the two components we prescibe a jump of the solution proportional to the conormal derivatives via a function of order epsilon ^ gamma. The case gamma=1 is the most interesting infact a memory effect appears in the homogenized equation.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Correctors for the Homogenization of a Class of Hyperbolic Equations with Imperfect Interfaces |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Abstract: | We present here some corrector results for the homogenization of the wave equation in a two-component composite with epsilon-periodic connected inclusions. On the interface separating the two components we prescibe a jump of the solution proportional to the conormal derivatives via a function of order epsilon ^ gamma. The case gamma=1 is the most interesting infact a memory effect appears in the homogenized equation. |
Handle: | http://hdl.handle.net/11580/10499 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.