Early screening for breast cancer is an effective tool to detect tumors and decrease mortality among women. However, COVID restrictions made screening difficult in recent years due to a decrease in screening tests, reduction of routine procedures, and their delay. This preliminary study aimed to investigate mass detection in a large-scale OMI-DB dataset with three Transfer Learning settings in the early screening. We considered a subset of the OMI-DB dataset consisting of 6,000 cases, where we extracted 3,525 images with masses of Hologic Inc. manufacturer. This paper proposes to use the RetinaNet model with ResNet50 backbone to detect tumors in Full-Field Digital Mammograms. The model was initialized with ImageNet weights, COCO weights, and from scratch. We applied True Positive Rate at False Positive per Image evaluation metric with Free-Response Receiver Operating Characteristic curve to visualize the distributions of the detections. The proposed framework obtained 0.93 TPR at 0.84 FPPI with COCO weights initialization. ImageNet weights gave comparable results of 0.93 at 0.84 FPPI and from scratch demonstrated 0.84 at 0.84 FPPI.

Transfer Learning in Breast Mass Detection on the OMI-DB Dataset: A Preliminary Study

Molinara, Mario
;
Bria, Alessandro;Marrocco, Claudio;Tortorella, Francesco
2023-01-01

Abstract

Early screening for breast cancer is an effective tool to detect tumors and decrease mortality among women. However, COVID restrictions made screening difficult in recent years due to a decrease in screening tests, reduction of routine procedures, and their delay. This preliminary study aimed to investigate mass detection in a large-scale OMI-DB dataset with three Transfer Learning settings in the early screening. We considered a subset of the OMI-DB dataset consisting of 6,000 cases, where we extracted 3,525 images with masses of Hologic Inc. manufacturer. This paper proposes to use the RetinaNet model with ResNet50 backbone to detect tumors in Full-Field Digital Mammograms. The model was initialized with ImageNet weights, COCO weights, and from scratch. We applied True Positive Rate at False Positive per Image evaluation metric with Free-Response Receiver Operating Characteristic curve to visualize the distributions of the detections. The proposed framework obtained 0.93 TPR at 0.84 FPPI with COCO weights initialization. ImageNet weights gave comparable results of 0.93 at 0.84 FPPI and from scratch demonstrated 0.84 at 0.84 FPPI.
2023
9783031376597
9783031376603
File in questo prodotto:
File Dimensione Formato  
AIHA2022.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 5.22 MB
Formato Adobe PDF
5.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/104786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact