This study explores the innovative use of digital image processing (DIP) techniques, also named PhotoMonitoring, for analysing the triggering conditions of shallow landslides. The approach, based on the combination of optical and infrared thermographic imaging (IRT), was applied to a laboratory-scale slope, reproduced in a flume test apparatus. Three experiments were conducted to replicate rainfall-induced shallow landslides, applying change detection and digital image correlation analysis to both optical and thermal images. The method combines IRT’s ability to measure ground surface temperature changes with DIP’s capacity to track movement and displacement. Results showed the high reliability of the displacement time-series obtained through IRT-DIP with respect to the reference optical-DIP. The IRT-DIP technique also detects anomaly signals two minutes before landslide occurrence that can be regarded as a possible failure precursor. This study testifies to the potential of image analysis as a remote sensing technique, demonstrating the ability of DIP to capture the dynamics of shallow landslides, as well as the advantages of optical–IRT combinations to follow slope deformation processes during night-time. This approach, if properly adapted to realscale scenarios, may contribute to a better understanding of landslide behaviour, improve landslide monitoring strategies, and promote more effective early warning systems (EWS).

Optical and Thermal Image Processing for Monitoring Rainfall Triggered Shallow Landslides: Insights from Analogue Laboratory Experiments

Fiorucci, Matteo;
2023-01-01

Abstract

This study explores the innovative use of digital image processing (DIP) techniques, also named PhotoMonitoring, for analysing the triggering conditions of shallow landslides. The approach, based on the combination of optical and infrared thermographic imaging (IRT), was applied to a laboratory-scale slope, reproduced in a flume test apparatus. Three experiments were conducted to replicate rainfall-induced shallow landslides, applying change detection and digital image correlation analysis to both optical and thermal images. The method combines IRT’s ability to measure ground surface temperature changes with DIP’s capacity to track movement and displacement. Results showed the high reliability of the displacement time-series obtained through IRT-DIP with respect to the reference optical-DIP. The IRT-DIP technique also detects anomaly signals two minutes before landslide occurrence that can be regarded as a possible failure precursor. This study testifies to the potential of image analysis as a remote sensing technique, demonstrating the ability of DIP to capture the dynamics of shallow landslides, as well as the advantages of optical–IRT combinations to follow slope deformation processes during night-time. This approach, if properly adapted to realscale scenarios, may contribute to a better understanding of landslide behaviour, improve landslide monitoring strategies, and promote more effective early warning systems (EWS).
File in questo prodotto:
File Dimensione Formato  
remotesensing-15-05577.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 10.44 MB
Formato Adobe PDF
10.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/103424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact