Multidrug resistance (MDR) mediated by the drug efflux protein, 170-kDa P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape cell death induced by chemotherapeutic drugs. Moreover, evidence suggests that cell lines expressing high levels of 170-kDa P-gp are less sensitive to caspase-mediated apoptosis induced by a wide range of death stimuli, including Fas ligand, tumor necrosis factor, and ultraviolet irradiation. However, the fate of 170-kDa P-gp during apoptosis is unknown. In this study, we demonstrate for the first time that 170-kDa P-gp is cleaved during apoptosis of VBL100 human T-lymphoblastoid CEM cells. Apoptotic cell death was induced by LY294002 (a pharmacological inhibitor of the phosphoinositide 3-kinase/Akt survival pathway), H2O2, and Z-LEHD-FMK (a caspase-9 inhibitor which has been recently reported to induce apoptosis in CEM cells). Using an antibody to a common epitope present in both the third and the sixth extracellular loop of P-gp, two cleavage products were detected, with an apparent molecular weight of 80 and 85 kDa. DEVD-FMK (a caspase-3 inhibitor), but not VEID-CHO (a caspase-6 inhibitor), blocked 170-kDa P-gp cleavage. Recombinant caspase-3 was able to cleave in vitro 170-kDa P-gp yielding two fragments of equal size to those generated in vivo. Considering the size of the cleaved fragments and their reactivity with antibodies, which recognize either the N-half or the C-half region of the protein, it is conceivable that the cleavage occurs intracytoplasmically. Since 170-kDa P-gp has been reported to counteract apoptosis, its cleavage may be a mechanism aimed at blocking an important cell survival component.

Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells.

CAPPELLINI, Alessandra;PAPA, Veronica;
2006-01-01

Abstract

Multidrug resistance (MDR) mediated by the drug efflux protein, 170-kDa P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape cell death induced by chemotherapeutic drugs. Moreover, evidence suggests that cell lines expressing high levels of 170-kDa P-gp are less sensitive to caspase-mediated apoptosis induced by a wide range of death stimuli, including Fas ligand, tumor necrosis factor, and ultraviolet irradiation. However, the fate of 170-kDa P-gp during apoptosis is unknown. In this study, we demonstrate for the first time that 170-kDa P-gp is cleaved during apoptosis of VBL100 human T-lymphoblastoid CEM cells. Apoptotic cell death was induced by LY294002 (a pharmacological inhibitor of the phosphoinositide 3-kinase/Akt survival pathway), H2O2, and Z-LEHD-FMK (a caspase-9 inhibitor which has been recently reported to induce apoptosis in CEM cells). Using an antibody to a common epitope present in both the third and the sixth extracellular loop of P-gp, two cleavage products were detected, with an apparent molecular weight of 80 and 85 kDa. DEVD-FMK (a caspase-3 inhibitor), but not VEID-CHO (a caspase-6 inhibitor), blocked 170-kDa P-gp cleavage. Recombinant caspase-3 was able to cleave in vitro 170-kDa P-gp yielding two fragments of equal size to those generated in vivo. Considering the size of the cleaved fragments and their reactivity with antibodies, which recognize either the N-half or the C-half region of the protein, it is conceivable that the cleavage occurs intracytoplasmically. Since 170-kDa P-gp has been reported to counteract apoptosis, its cleavage may be a mechanism aimed at blocking an important cell survival component.
File in questo prodotto:
File Dimensione Formato  
ale9.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 350.35 kB
Formato Adobe PDF
350.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11580/10072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 46
social impact