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Abstract— The requirements of modern production systems
together with more advanced robotic technologies have fostered
the integration of teams comprising humans and autonomous
robots. While this integration has the potential to provide
various benefits, it also raises questions about how to effec-
tively manage these teams, taking into account the different
characteristics of the agents involved. This paper presents a
framework for task allocation in a human multi-robot collabo-
rative scenario. The proposed solution combines an optimal
offline allocation with an online reallocation strategy which
accounts for inaccuracies of the offline plan and/or unforeseen
events, human subjective preferences and cost of task switching.
Experiments with two manipulators cooperating with a human
operator in a box filling task are presented.

I. INTRODUCTION

Human-Robot Collaboration (HRC) has become a key

technology in modern production systems to achieve flex-

ibility and high quality: the reasoning abilities, advanced

perception and dexterous manipulation of the former are

combined with the endurance, precision and strength of the

latter. This opens up the problem of how to optimally assign

tasks to the two types of agents considering their inherently

different features [1]. Although optimal task allocation is

a well-known problem for multi-robot systems [2], there

are fundamental differences between human-robot and multi-

robot scenarios: humans are characterized by several param-

eters that are generally challenging to quantify, interdepen-

dent, time-varying, affected by external factors and different

from person to person. This makes evident that optimal

task allocation in this setting is far from trivial, requiring

to continuously monitor human and robot requirements and

constraints, and adapt the solution accordingly.

In this context, human-robot optimal task allocation is

addressed in [3] where human capabilities are monitored and

reallocation is performed whenever their variation overcomes

a predefined threshold. Human-centered task allocation is

also considered in [4] for assembly tasks where human

capabilities, workload and ergonomics aspects are taken into

account. An additional example of HRC in industrial settings

is presented in [5] with tasks decomposed in simple actions

that are allocated offline based on complexity, dexterity and

required effort. Different features and complexity of tasks

are considered in the allocation among human and robots

in [6], showing that this classification lowers deployment and

changeover times. Moreover, the stochastic human nature is
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tackled in [7] where a hierarchical task model from single-

agent demonstrations is automatically built.
The performance of the human-robot team is at the center

of [8] where task execution constraints, variability in the task

execution by the human and job quality are considered by a

scheduling algorithm. Human fatigue, as one of the causes

of decreased efficiency and health damage, is addressed

in [9]. To counteract its effects in HRC, a task scheduling

model that integrates micro-breaks to recovery from fatigue

accumulation is proposed. Human-robot team performance

is also the focus of [10]. Here, the concept of Cognitive

Task Load (CTL) is introduced. Based on this, an adaptive

task allocation mechanism is designed that reallocates tasks

depending on human performance and robot autonomy, while

considering the switching costs to a completely new task

plan. A fluent, efficient and safe collaboration is the objective

of the work in [11]. The most likely human goals and

precedence constraints are inferred to select the best robot

goal and the respective motion plan.
This work advances the state of the art by proposing an

optimal task-allocation framework for teams composed by

any number of robots and humans. The proposed solution

allows to quantitatively consider the different nature of robots

and humans by taking into account several features like

workload, task quality, and human supervision role as well

as spatial and temporal application constraints. Moreover, the

task switching cost is considered that, despite being shown

to be an important aspect, has been scarcely investigated

in the literature for human-robot task allocation. In detail,

it is a key feature both for humans and robots, leading

to a potential increase of the overall system performance,

since it enables avoiding time losses caused by allocating

consecutive tasks to agents that are spatially far or that

are required, for example, to perform time-consuming tool

changes. Furthermore, in relation to human satisfaction,

reduced switching times potentially lead to a lower CTL

and psychological burden due to switching between tasks of

different nature and requiring different skills [12]. This work

is built on our previous work [13] in which a Mixed Integer

Linear Programming (MILP) formulation was first defined

to optimally allocate tasks among humans and robots. Here,

we extend and test this work in the direction of a more fluent

optimal allocation by introducing the following points:

• The concept of cost of switching from one task to

another is formally introduced and taken into account

to derive the optimal allocation;

• The possibility to specify human preferences regarding

tasks that the human wish or not to execute is provided

and integrated in the MILP formulation;

• An online monitoring and update of the above param-



eters is foreseen enabling re-planning whenever a new

human preference is expressed or the overall perfor-

mance of the running plan, also involving other relevant

task parameters, decreases below a given threshold;

• A validation campaign is carried out to show the effec-

tiveness of the improved formulation compared to [13];

• Real-world experiments involving two manipulators and

a human agent are shown to validate the framework.

II. HUMAN MULTI-ROBOT COLLABORATIVE SETTING

Let A = Ah ∪ Ar be the set of na agents defined as

A = {a1, a2, · · · , ana
}, with Ah = {ah,1, ah,2, · · · , ah,nh

}
the set of nh human agents, and Ar = {ar,1, ar,2, · · · , ar,nr

}
the set of nr robotic agents, i.e., na = nh + nr. Let T be

the set of m tasks T = {τ1, τ2, · · · , τm} to be executed.

We consider that the set of task T is partitioned into p
clusters, with p ≤ m, on the basis of common properties.

For instance, it is reasonable to assume that two tasks

encoding pick-and-place operations of the same item type

belong to the same cluster. By denoting the cluster i as Ci,
it holds T = C1 ∪ C2 ∪ · · · ∪ Cp. We introduce the function

c : T → C, with C = {C1, · · · , Cp}, that provides the cluster

associated with a given task. We refer to tasks belonging to

the same cluster as similar. Note that this partitioning does

not compromise the approach generality, since clusters can

be associated to unique tasks if no common features exist.

In the considered collaborative scenario, we envisage that

each task must be performed by an agent a ∈ A, either

a robot or a human, and that, if necessary, this can also

be supervised by a human operator. During supervision,

the human monitors the task execution and can promptly

intervene to guarantee a correct task completion if any

anomalies or malfunctions are detected. We consider the

following task parameters for each task i ∈ T :

1) estimated spatial location pi ∈ R
3 where the task is

executed, e.g., centroid of the occupation area when

performing the task;

2) estimated execution time ∆i,j ∈ R
+ to carry out the

task i by agent j, ∀j ∈ A. This parameter can be set to

an arbitrary high value M in case the agent is not able

to perform the task. For instance, a robot may be inad-

equate to realize a task requiring strong dexterity skills

like the manipulation of highly deformable objects [14];

3) switching cost ∆t
i,k,j ∈ R

+ representing the time

needed by each agent j to transition from task i to

a subsequent task k, ∀k ∈ T , j ∈ A. This cost can

include, for example, the time to change tools for the

next task k or to travel to the next location pk;

4) estimated execution quality qi,j ∈ [0, 1] representing a

measure of the accuracy achieved by the agent j in

completing the task, ∀j ∈ A. For example, in a pick-

and-place task, this index can quantify the positioning

accuracy reachable by the agent when executing it;

5) estimated supervision quality qsi,j ∈ [0, 1] assessing a

measure of the accuracy achieved if the human agent j
supervises the execution of the task and possibly inter-

venes if needed, ∀j ∈ Ah;

6) estimated workload wi,j ∈ [0, 1] for each agent j to

carry out the task, ∀j ∈ A. This variable can represent,

for instance, the overall control effort to accomplish the

task in case of robotic agent or the cognitive and/or

physical effort, e.g., [15], [16], in case of human agent.

Since similar tasks belong to the same cluster, we assume that

same execution and supervision quality indices are associated

with tasks belonging to the same cluster, i.e., if c(τi) = c(τk),
it holds qi,j = qk,j , ∀j ∈ A, and qsi,j = qsk,j , ∀j ∈ Ah,

∀i, k ∈ T . Moreover, we assume that quality indices are

additive, implying that the overall quality of a task is given

by the sum of execution and supervision quality.

The possibility for human operators to express preferences

in terms of tasks that they wish to execute or not is also

included. Each preference is defined as a tuple (a, τ, V ),
where a ∈ Ah is the human operator specifying the pref-

erence on the task τ ∈ T and V ∈ {0, 1} is the value

of the preference, that is 0 if the human does not want to

perform the task and 1 otherwise. The set collecting possible

human preference tuples is denoted by Hp. As realistic in

collaborative environments, we consider that all the above

task parameters as well as human preferences can generally

vary over time (see Sec. V for details).

We additionally foresee that the following constraints can

be defined: i) precedence constraints, representing precon-

ditions for tasks to be executed, ii) spatial constraints, rep-

resenting need for non-simultaneity of tasks as their spatial

locations are too close together, and iii) quality constraints,

representing the minimum accuracy expected for each task.

To this aim, the binary variables Pi,k, Di,k ∈ {0, 1}, ∀i, k ∈
T , are defined, where Pi,k is equal to 1 if task i has to

be completed for task k to start, and is 0 if there are no

constraints in terms of sequentiality from task i to j, and

Di,k is 1 if ‖pi − pk‖ < ε, ∀i, k ∈ T , with ε a positive

threshold, and is 0 otherwise. Any other criterion accounting

for the volume occupation during task execution can be

applied to define Di,k. The positive threshold q ∈ [0, 1] is

also introduced, denoting the minimum required quality.

Finally, to handle switching costs, we define the set Ta
comprising na auxiliary tasks which do not correspond to

real tasks of the system, but allow to account for the starting

switching cost for each agent j. Let f : A → T be

the function that, for each agent j, provides the respective

auxiliary task i. We specify that these tasks must be executed

before any real task, i.e., it holds Pi,k = 1, ∀i ∈ Ta, k ∈ T ,

and the respective switching cost ∆f(aj),k,j represents the

time to transition from the initial configuration of agent j to

each task k ∈ T , ∀j ∈ A, while zero execution time is set,

i.e., ∆f(aj),j = 0, ∀j ∈ A. The other task parameters are

not relevant for the auxiliary tasks. We denote the set given

by the union of T and Ta as T̃ , i.e., T̃ = T ∪ Ta.

Based on the above, we are now ready to formulate the

main problem addressed in this work.

III. PROBLEM FORMULATION

Consider a human multi-robot collaborative setting, with

agents A and assigned tasks T , as described in the previous

section. Let ti ∈ R
+ and ti ∈ R

+ be the starting and final

times of task i, ∀i ∈ T . Let Xi,j ∈ {0, 1} be the binary

allocation variable, ∀i ∈ T̃ , j ∈ A, which is 1 if agent j
is required to perform task i, and is 0 otherwise, and let
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Fig. 1: Overview of the proposed approach.

Si,j ∈ {0, 1}, ∀i ∈ T , j ∈ Ah be the binary supervision

variable, which is 1 if human j is required to supervise the

execution of task i, and is 0 otherwise. Our goals are twofold:

i) to define an optimal assignment of starting and final

times, and allocation and supervision variables, fulfilling any

system constraints and human preferences while minimizing

a performance metric depending on the overall quality,

workload and time, and ii) to guarantee a correct online

execution of the tasks, taking into account the variability

of the task parameters and human preferences.

A. Method Overview

An overview of the proposed architecture is depicted in

Figure 1. Given the sets of tasks T and agents A, we

first define the constraints (block 1) that must be fulfilled

for realizing the tasks (details in Sec. IV). These constraints

are used to formulate an optimal human multi-robot task

allocation problem resorting to MILP theory (block 2). By

solving this problem, the starting and final times, ti, ti, and

the allocation, Xi,j ∀i ∈ T̃ , j ∈ A, and supervision variables,

Si,j , ∀i ∈ T , j ∈ Ah, are determined. At this point, the robot

trajectories to accomplish the assigned tasks in the assigned

time slots are computed (block 3). Concurrently, humans are

informed of the tasks they must carry out or supervise. Then,

the task execution can start (block 4).

At run-time, as explained in Sec. V, the task parameters

and human preferences are monitored (block 5). Any changes

in these are recorded and propagated to tasks in the same

cluster as well as to the set of constraints. A reallocation

module (block 6) is then responsible for checking the ful-

filment of all the constraints with the updated parameters

as well as for checking possible impairments in solution

optimality. If needed, a new optimal solution is computed

and the robotic and human plans are updated accordingly.

IV. OPTIMAL SOLUTION

Let q, w and t be the overall normalized quality, workload

and time to execute all tasks, respectively, defined as

q =
1

m

∑

i∈T



∑

j∈A

qi,jXi,j +
∑

j∈Ah

qsi,jSi,j




w =
1

m

∑

i∈T



∑

j∈A

wi,jXi,j +
∑

j∈Ah

ws
i,jSi,j




t = max
i∈T

ti
ΓM

(1)

with ΓM a makespan upperbound that can be computed

given the estimated execution and switching times. We aim

to assign the decision variables, i.e., starting and final times

and allocation and supervision variables, in such a way that q,

w and t are optimized while fulfilling the system constraints.

Formally, we propose the following MILP formulation:

min
Xi,j ,Si,j ,ti,ti

t+ w − q (2a)

s.t.
∑

j∈A

Xi,j = 1, ∀i ∈ T (2b)

Xf(aj),j = 1, ∀j ∈ A (2c)

Xi,j = V, ∀ (j, i, V ) ∈ Hp

(2d)
∑

j∈A

qi,jXi,j +
∑

j∈Ah

qsi,jSi,j ≥ q, ∀i ∈ T (2e)

ti − ti ≥ Xi,j∆i,j +
∑

k∈T̃

Fk,i,j∆
t
k,i,j , ∀i ∈ T , j ∈ A

(2f)

tk − Pi,kti ≥ 0, ∀i, k ∈ T̃ (2g)

Si,j +Xi,j ≤ 1, ∀i ∈ T , j ∈ Ah

(2h)

tk − ti ≥ −M(1−Di,k)

−M(1− Zi,k),
∀i, k ∈ T (2i)

ti − tk ≥ −M(1−Di,k)−M Zi,k, ∀i, k ∈ T (2j)

tk − ti ≥ −M(2−Xi,j −Xk,j

− Si,j − Sk,j)−M(1− Ui,k,j)
∀i, k ∈ T , j ∈ A

(2k)

ti − tk ≥ −M(2−Xi,j −Xk,j

− Si,j − Sk,j)−M Ui,k,j

∀i, k ∈ T , j ∈ A

(2l)

Ri,k,j +Ri,k,j +Ri,k,j = 1, ∀i, k ∈ T̃ , j ∈ A
(2m)

ti − tk −MRi,k,j +Ri,k,j

≤ M(2−Xi,j −Xk,j),
∀i, k ∈ T̃ , j ∈ A

(2n)

ti − tk +Ri,k,j −MRi,k,j

≥ −M(2−Xi,j −Xk,j),
∀i, k ∈ T̃ , j ∈ A

(2o)

Ri,k,j ≤ Xi,j , Ri,k,j ≤ Xk,j ,

Ri,k,j ≤ Xi,j , Ri,k,j ≤ Xk,j ,
∀i, k ∈ T̃ , j ∈ A

(2p)

F i,k,j + F i,k,j + Fi,k,j = 1, ∀i, k ∈ T̃ , j ∈ A
(2q)

Ok,j −Oi,j −MF i,k,j + F i,k,j

≤ 1 +M(2−Xi,j −Xk,j),
∀i, k ∈ T̃ , j ∈ A

(2r)

Ok,j −Oi,j + F i,k,j −MF i,k,j

≥ 1−M(2−Xi,j −Xk,j),
∀i, k ∈ T̃ , j ∈ A

(2s)

Fi,k,j ≤ Xi,j , Fi,k,j ≤ Xk,j , ∀i, k ∈ T̃ , j ∈ A.
(2t)

As mentioned above, the optimization cost in (2a) encour-



ages to minimize the overall execution time t and workload

w, both for executing and supervising tasks, as well as to

maximize the overall execution and supervision quality q.

Concerning the constraints, the equality (2b) states that

each task has to be assigned to an agent. Similarly, the

constraint in (2c) ensures that each auxiliary task in Ta is

assigned to the respective agent, while human preferences in

Hp are taken into account in (2d). A minimum task quality

q for each task i ∈ T is required by means of (2e) which

considers the execution quality index qi,j as well as any

supervision quality qsi,j provided by humans. We assume

that when a human expresses the preference to execute a

task, he/she is able to achieve the minimum task quality.

A minimum task duration according to the allocated agent

is established by (2f), where Fk,i,j ∈ {0, 1} is an auxiliary

binary decision variable which, as explained in the following,

is set to 1 if tasks k and i are both associated with agent j and

task i is consecutive to task k, and is equal to 0 otherwise.

In detail, inequality (2f) ensures that if task i is assigned to

agent j, i.e., it holds Xi,j = 1, then the assigned task time

ti − ti must be at least equal to i) the respective estimated

execution time ∆i,j plus ii) any switching cost ∆t
k,i,j for

agent j to transition from a previous task k.

Sequentiality constraints are defined in (2g) which simply

imposes that if a task i has to precede a task k, i.e., Pi,k = 1,

then the final time of the former, ti, is lower than or equal to

the start time of the latter, tk. Inequality (2h) ensures that a

human j ∈ Ah cannot simultaneously execute and supervise

a task i ∈ T , i.e., either it holds Xi,j = 1 or Si,j = 1.

Spatial constraints are expressed by (2i)-(2j) so that tasks

leading agents to work too close together are not executed

simultaneously. Let Zi,k be an auxiliary binary decision

variable ∀i, k ∈ T . If a spatial constraint exists between

tasks i and k, i.e., Di,k = 1, then equations (2i)-(2j) imply

that either task k starts after task i is completed, i.e., tk ≥ ti
(if Zi,k = 1), or the opposite holds true, i.e., ti ≥ tk (if

Zi,k = 0). No constraints are imposed if Di,k = 0. Moreover,

inequalities (2k)-(2l), with Ui,k,j an auxiliary binary decision

variable ∀j ∈ A, i, k ∈ T , guarantee that each agent can only

execute or supervise one task at a time.

Equations (2m)-(2t) represent the core constraints to prop-

erly set the switching cost auxiliary variable Fk,i,j used

in (2f). More specifically, in order to account for switching

costs, we need to retrieve the information about whether two

tasks, assigned to the same agent, are consecutive or not. To

this aim, we introduce the auxiliary binary decision variables

Ri,k,j , Ri,k,j , Ri,k,j and F i,k,j , F i,k,j , ∀i, k ∈ T̃ , j ∈ A.

Starting from equations (2m)-(2p), they lead

Ri,k,j , Ri,k,j , Ri,k,j to be representative of the mutual

relationship between the start and final times of pairs of

tasks i and k allocated to agent j. By virtue of (2m), these

variables are mutually exclusive, i.e., only one at a time

can be equal to 1. Then, according to (2n)-(2p), when tasks

i and k are allocated to agent j, it holds i) Ri,k,j = 1,

if the start time of task i coincides with the end time of

task k (ti = tk), ii) Ri,k,j = 1, if task i follows task k
(ti > tk), and iii) Ri,k,j = 1, if task i precedes task k
(ti,j < tk,j). No relevant constraints are set if the tasks i
and k are not assigned to agent j. Note that the variables

Ri,k,j , Ri,k,j , Ri,k,j only contain information of whether a

task precedes or follows a second task, but do not capture if

they are consecutive. This implies that, for example, all the

tasks k of agent j that start after the completion of a task i
will exhibit Ri,k,j = 1. In view of the above variables, we

define the following integer variable

Oi,j =
∑

k∈T̃
(Ri,k,j +Ri,k,j), ∀i ∈ T̃ , j ∈ A (3)

which, in case task i is executed by agent j, provides its

order in the sequence of tasks executed by the same agent.

For example, the relation Oi,j = 2 means that task i is the

third task executed by agent j, i.e., two tasks precede task

i for agent j. Based on (3), we can determine if two tasks

i and k are consecutive for agent j, with k following i,
by verifying if the condition Ok,j − Oi,j = 1 is met or

not. This is exploited in (2q)-(2t) to properly set Fi,k,j . In

detail, the equality in (2q) specifies the mutual exclusivity of

variables Fi,k,j , F i,k,j , F i,k,j . Then, the inequalities in (2r)-

(2t) implement an if-then-else condition such that, if tasks i
and k are allocated to agent j and are consecutive, with task

k following i, then it holds Fi,k,j = 1.

In summary, the proposed optimal formulation can be

easily adapted to various human multi-robot collaborative

settings involving different tasks and/or number of agents.

Concerning the computational complexity, it is well-known

that MILP problems are NP-hard. This issue is behind

the scope of this work; however, ad-hoc heuristics can be

included to mitigate this issue as, for example, in [17].

V. ONLINE REALLOCATION

A. Monitoring and update

When a task is completed, the monitoring and update

phase is activated. Let us consider a task i, executed after task

k by agent j, and completed by the same agent. Let us also

consider that the task may have been possibly supervised

by the human l. We refer to the parameters’ values prior

updating as nominal values and assume that all the task

parameters 1)-6) in Sec. II can be monitored and measured.

The parameters are updated as follows.

The spatial location pi, execution time ∆i,j , switching

time ∆k,i,j , and workloads (for executing wi,j and possi-

bly supervising ws
i,l) are updated with the current measure

for the involved agents. The same parameters, except the

spatial location, are also updated for the other tasks in the

cluster c(τi) according to the same proportion. This implies

that if, for example, a certain variation of the execution time

is recorded compared to the nominal value, then the same

variation is propagated to execution times ∆q,j of similar

tasks q in the cluster c(τi). Updating the spatial location pi

also leads to updating the binary variable Di,q , ∀q ∈ T .

Regarding the quality parameters, we distinguish two

possible cases. i) In case there is no supervision or the

supervising human does not need to intervene, the execution

quality qi,j is updated with the measured one. The same

update is applied to the similar tasks in c(τi). ii) In case

the task is supervised and the supervising human l has to

intervene, the supervision quality qsi,l is set equal to the

measured one and no update is made on the execution quality.

Moreover, we consider that the humans can express pref-

erences online for tasks to execute or not execute. Therefore,



whenever a new preference is provided or a previous one is

modified, the set of preferences Hp is updated accordingly.

B. Reallocation strategy

The strategy for determining whether to reallocate future

tasks or not is the following. First, we check that the

current solution in terms of task starting and final times and

supervision and allocation variables is still feasible, i.e., no

constraints are violated considering the updated parameters.

For instance, if a human agent introduces a preference not to

perform a future task that was previously assigned to him/her,

the constraints in (2d) will no longer be satisfied, requiring to

compute a new optimal solution to (2). Second, we check the

allocation optimality variation. Let T + ⊂ T be the subset

of tasks which still need to be executed, and let Ĉ+ and

C+ be the cost functions associated with the tasks in T +

and computed using the nominal and updated parameters,

respectively. We reallocate if the following condition occurs:

|Ĉ+ − C+| / Ĉ+ > δt, (4)

with δt a positive constant, implying that reallocation is

performed to preserve the allocation optimality with a certain

tolerance. Online reallocation is applied if new tasks to

execute are requested or if the available resources change.

Note that we assume that tasks already started cannot be in-

terrupted in reallocation, i.e., we impose that their allocation

is preserved during replanning.

VI. VALIDATION RESULTS

A. Setup description

The experimental setup, shown in Figure 2, is composed

of two 7-DOFs Kinova Jaco2 manipulators (ar,1 and ar,2),

fixed on a desk, and a human operator. Inspired by the Eu-

ropean project CANOPIES, focusing on HRC in agricultural

contexts, the collaborative objective is the placement of six

bunches of grapes (numbered from 1 to 6) in a box, divided

in two layers separated by two paper cloths (numbered as

7 and 8). Each object i is associated with a corresponding

pick-and-place task τi, that takes the object from its initial

position and places it in a given location inside the box.

τ1
τ1

τ2

τ2τ2
τ3

τ3τ3

τ4
τ4

τ5

τ5 τ6
τ6τ6

τ7

τ7

τ8

τ8
τ8

ar,1ar,1ar,1 ar,2ar,2ar,2

a) b) c)

Fig. 2: Sequence of tasks to perform for composing the two layers.

The software architecture is based on ROS (Robotic Op-

erating System) middleware interfaced with MATLAB and

Gurobi solver to compute the output of the optimization

problem. A Graphical User Interface (GUI), shown in the

accompanying video, is also realized in MATLAB. Here, the

human can visualize the optimal plan, receive notifications

when a task has to be started, and receive information about

the current tasks executed by the robots. In addition, two

buttons are displayed in the GUI that the human can press

to notify the termination of a task or express the preference

not to execute a given task.

Figure 2.a shows the initial positions of the objects, while

Figures 2.b and 2.c show the two layers to compose. The

sequence of tasks to be performed is: a paper cloth needs

to be placed on the box base (task 7); then, bunches 1 and

4 have to be placed close to two corners of the box, while

bunch 5 has to be positioned in the center; next, the second

paper cloth is placed in the box (task 8); finally, the last three

bunches have to be released inside the box, with bunches 3
and 6 in the corners and 2 in the center.

The quality parameters qi,j are evaluated as a measure of

the positioning accuracy in the box. In this perspective, the

eight tasks are divided into three clusters: the first one, C1,

includes τ1, τ3, τ4 and τ6, which require more precision as

the release positions are in the corners of the box; the second

one, C2, is composed of τ7 and τ8, which require significant

dexterity to be executed; finally, τ2 and τ5 are included in the

third cluster C3, which gathers the tasks that do not require

particularly high skills to be carried out. Estimated execution

times for the robots are computed by using average linear

velocity equal to 0.20 m/s and average angular velocity equal

to 1.7 rad/s. Regarding the human agent, based on prior

tests, they are set by considering average velocity equal to

0.20 m/s. In this scenario, switching costs model the time

needed by the agents to go from the place position of a task

to the pick position of the subsequent task.

The following precedence constraints are introduced: the

first paper cloth (τ7) has to be placed before the start of

τ1, τ4 and τ5 (related to grape bunches), i.e., P7,k = 1
with k ∈ {1, 4, 5}; then, the second paper cloth (τ8) has

to be placed before the start of the remaining tasks related

to grape bunches (τ2, τ3 and τ6), i.e., P8,k = 1 with

k ∈ {2, 3, 6}. Spatial constraints are introduced between

{τ4, τ5} and {τ2, τ3}, i.e., D4,5 = D5,4 = D2,3 = D3,2 = 1,

for which initial positions are close to each other.

The minimum quality threshold q in (2e) is set to 0.8.

Regarding robotic agents ar,1 and ar,2, the execution quality

is set to 0.6 for tasks of cluster C1, since the grape bunches

have to be precisely placed in the box corners and the robots

might not be able to reach this accuracy, to 1 for tasks in

C3, meaning that the robots can confidently perform these

tasks, and to 0 for tasks in C2, that would require too much

dexterity to be performed by the robotic agents. Similarly,

the execution times for tasks in C2 are set to M for the

robots. Concerning the human agent ah,1, all the execution

qualities are set to 0.8, while the supervision ones to 1. The

execution workloads for the all the agents are set to 1, while

the supervision workload for the human is set to 0.3. We

consider that no human preferences are provided offline, i.e.

Hp = ∅ at the beginning of the case study. Finally, the

reallocation threshold δt is set equal to 0.4.

B. Numerical validation campaign

A validation campaign has been carried out where results

with and without the optimization of the switching cost

are compared. In detail, the initial configurations of the 8
objects in the scene are uniformly randomized in the interval

[−1, 1] m for the x, y components with respect to the center

of the table. Then, for each configuration, the distance of the

objects from the center is gradually increased up to 10 times



from the initial one. The difference between the makespan,

i.e., the total process time, resulting without considering

the switching cost and with optimizing it is computed for

each test. When no switching cost optimization is applied,

the robots and the human are required to reach a default

configuration close to the work area after every task as in

[13]. Figure 3 shows the average and standard variation of

the makespan gap obtained with 50 random initial configu-

rations. The figure makes evident that the mean difference is

always positive, i.e., benefits in terms of makespan always

occur when considering the switching time, and increases

with higher distances (for the sake of completeness, the

difference is always positive). This is motivated by the fact

that the more the objects are scattered in the environment,

the more crucial it is to optimize the time to change task,

i.e., to reach the next allocated object. For the sake of space,

the other optimization variables are not reported since no

significant variation occurs for these.
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Fig. 3: Makespan gap obtained without and with handling the
switching cost. Average and standard deviation values are reported.

C. Experimental results

We now present the experimental results of the proposed

framework. A video reporting the complete experiments is

provided as supplementary material.
1) Optimal plan and switching cost comparison: First,

we show in Figure 4-top the optimal plan that is obtained by

solving problem (2) for the considered setup. Tasks assigned

to each agent (ar,1, ar,2, ah,1) are depicted as segments

representing the task duration, where solid segments indicate

task executions, and dashed ones denote task supervisions.

The figure shows that the computed plan meets all the

constraints, and assigns, among others, tasks τ7 and τ8 for

paper cloths to the human since they cannot be executed by

the robots. The solution reaches total cost equal to 0.47, with

makespan equal to 84.57 s. To execute the plan, as shown

in the accompanying video, this is first displayed on the

GUI. When the human presses a START button, the process

begins. He executes τ7 and presses the FINISHED button to

notify the task termination. Then, he supervises ar,2 during

the execution of τ1, while ar,1 executes τ5. Once these tasks

are completed, the robot ar,2 starts the execution of τ4 under

human supervision. Following the plan, after the execution

of τ8 by the human, agent ar,1 starts τ3 under supervision,

while finally ar,1 executes τ2 and ah,1 executes τ6.

For the sake of comparison, and similarly to the above,

the optimization problem is also solved without taking into

account the switching cost. The resulting plan is shown in

Figure 4-bottom and its execution is reported in the video.

The figure shows that, again, all the requirements are met.

However, in this case the solution reaches a much higher total

cost, namely 0.70, which is mainly due to a significantly

higher makespan, equal to 111.23 s. This reconfirms the

effectiveness of the proposed formulation.
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Fig. 4: Task allocation obtained by taking into account the switching
costs (top) and without considering them (bottom).

2) Reallocation: In this case study we consider that the

human expresses online the preference not to perform an

assigned task. Specifically, starting from the plan in Figure

4-top and after the execution of task τ7, the human asks

(using the GUI) not to execute his next task, i.e., τ1, to

reduce his load. This preference is added to the set Hp and

the reallocation strategy in Sec. V-B is followed. Since the

preference leads the constraint (2d) to no longer be satisfied,

a new optimal plan is computed which redistributes the tasks

as depicted in Figure 5. This plan is then shown to the human

and the robot trajectories are updated accordingly. It is worth

noticing that the tasks that were already active at the time

of the reallocation request (τ4 for agent ar,1, supervised by

agent ah,1) are not affected by the reallocation. The updated

plan is finally completed as shown in the accompanying

video.
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Fig. 5: Task allocation obtained after the online reallocation.

VII. CONCLUSIONS

In this paper, a task allocation framework for human-

robot teams was devised. The proposed solution is based

on i) an optimal offline allocation that assigns tasks among

agents while taking into account their inherently different

natures, and ii) a re-planning strategy that accounts for time-

varying parameters and human preferences. The solution was

validated via experiments on a setup involving two robots and

a human operator. Future works will be aimed at extending

the framework with a human activity prediction module to

endow the robots with proactive behaviors.
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