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Abstract—Mobile communications have become a vital domain
for criminals and terrorists to exploit vulnerabilities, posing
significant threats to public safety and national security. More
precisely, they can employ cell site simulators such as Interna-
tional Mobile Subscriber Identity (IMSI) catchers to intercept
and monitor mobile communications, enabling eavesdropping,
tracking individuals’ movements, and potentially coordinating
illegal activities while evading detection by law enforcement
agencies. To overcome this issue, an innovative approach to detect
IMSI catchers using Convolutional Neural Networks (CNN)
and Long Short-Term Memory (LSTM) models is proposed.
Leveraging the power of deep learning, the developed models
process multivariate time series data to distinguish suspicious
patterns indicative of IMSI catcher presence. This work compares
nine different model architectures based on CNN, LSTM, or
a combination of both through a series of case studies. We
demonstrate that LSTM-based and Parallel CNN/LSTM models
outperform other architectures, achieving high precision and
recall rates. Then, the best two models are tested with several
sequence lengths. The presented models serve as valuable tools,
providing a further enhancement to the security of mobile
networks. The goal of this research work is to contribute to
the broader mission of integrating artificial intelligence within
the daily investigative practices of law enforcement agencies.

Index Terms—CNN, LSTM, Multivariate Time Series, Suspi-
cious Behaviour Classification, Cybersecurity in Public Space

I. INTRODUCTION

Nowadays, the massive paradigm shifts in information tech-
nologies and digital infrastructure, as well as new paradigms
like Smart Cities and Homes, Edge computing, and 5G,
have created a more intelligent environment where even more
devices are interconnected. In that sense, devices ranging
from home assistants and smartwatches to drones and cars,
but also traffic lights, fridges, and any sensor, continually
amass, process, and store data to enhance user experiences

and facilitate their day-to-day tasks. This new scenario has
resulted in a major surface of cyberattacks, i.e., critical points
that can suffer from a high-impact attack [1], [2], [3]. At the
same time, the number of illegal activities has increased since
this new information can be used as a facilitator for performing
many cybercrimes [4].

To respond to this escalation, law enforcement agencies
(LEAs) have started to apply paradigms like Big Data and
Artificial Intelligence (AI) to enhance the security of the public
space by promptly detecting dangerous/suspicious activities
that can be related to criminal investigation and even terrorism
activities [5]. Thereby, they started to acquire expertise in
using AI tools for analyzing and correlating huge amounts
of data, events, transactions, videos, images, etc. [6], [7]. In
fact, these AI solutions not only can be used to enhance their
investigative capabilities but also to enable them to predict
when and where new incidents are most likely to occur.
Yet, AI offers LEAs the potential to optimize productivity
and efficiency by streamlining processes, identifying patterns,
detecting threats at early stages, and making faster and more
accurate decisions. However, to maximize the benefit of AI,
LEAs must take a critical and human-centric approach to
implementing AI technologies, prioritizing the safety and
privacy of society [8].

One of the primary sources of personal threat data collection
is still represented by the mobile network. According to
Kaspersky1, data leakage, unsecured Wi-Fi, spoofing, phish-
ing, spyware, and broken cryptography are among the most
common mobile threats [9]. In particular, it is possible to buy
devices that allow attackers/hackers to eavesdrop on calls and
texts, install spyware on the mobile, jam the traffic or simply

1https://www.kaspersky.com
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take control of the mobile [10]. IMSI catcher represents an
example of this. An IMSI-catcher is a surveillance device used
to intercept and monitor mobile communications in a specific
area by mimicking a legitimate cell tower. This trick enables
hackers to capture various types of information from connected
devices [11]. However, while such valuable data are usually
collected by LEAs during their investigations to address threats
and crimes in specific areas, our case is the opposite: when
criminals use IMSI catchers for unlawful activities. In this
scenario, with the aid of AI, LEAs can identify and predict
suspicious activities and attacks that are timely associated with
IMSI catcher utilization.

In this context, LEAs must analyze the attributes that
indicate the presence of an IMSI catcher in a mobile net-
work, considering their temporal dependence, i.e., modelling
them as a time series. In that way, it will also be possible
to correlate the temporality and the possible periodicity of
specific crimes. For this reason, in this paper, we propose to
use deep learning (DL) techniques for classifying suspicious
behaviours associated with IMSI catchers. More specifically,
we compare the benefits and limitations of two architectures
that have already shown potential in multivariate time series
classification [12]: CNN and LSTM. CNNs have the ability to
automatically identify and extract important patterns from the
input time series data using convolution and pooling operations
[13]. While on the other hand, LSTMs are adept at modeling
short- and long-term dependencies in sequential data using the
gating mechanism and the built-in memory cells. Firstly, we
study how the two separate structures perform the multivariate
time series classification task. Then, we combine them in three
different architectures: i) cascading layers with CNN and then
LSTM here called CNN+LSTM, ii) cascading layers inverting
the order here called LSTM+CNN, and iii) using them in
parallel in the architecture called LSTM/CNN. Experiments
validate how different suspicious levels of the behaviours and
history length, i.e., the number of elements considered at once
as memory, affect the quality of the predictions. The results
demonstrate the significant capability of LSTM-based models,
whether used individually or in combination with CNN in a
parallel structure. Moreover, these architectures tend to work
better when dealing with shorter sequence lengths, which
helps the model reduce the impact of the class imbalance
issue within our dataset. This breakthrough paves the way for
broader applications in LEA practices and investigations.

The paper is organized as follows: In Section II we provide a
general background of the relevance of IMSI catcher detection
process, CNN and LSTM networks, as well as related works.
In Section III, the methodology proposed in this study is
described, whereas in Section IV, the dataset, the experiments,
the metrics used for their evaluation, and the architecture con-
figurations are reported. Section V reports and discusses the
results. Finally, Section VI concludes the paper and provides
some guidelines for future work.

II. PRELIMINARIES

This section is organized as follows: in Subsection IV-A,
we establish a knowledge base by discussing the attributes
that indicate the presence of an IMSI catcher in a mobile
network, while Subsection II-B provides brief definitions of
convolutional and temporal learning. Finally, we review related
work in Subsection II-C.

A. IMSI Catcher in Mobile Networks

Detecting the presence of IMSI catchers in the mobile phone
network represents a fundamental necessity, as they cause
several threats and risks to public and cyberspace safety in
various contexts. IMSI catchers are devices purposely built
to intercept mobile communications, including voice calls,
text messages, and data traffic, granting attackers unauthorized
surveillance capabilities. They also extend to data theft, where
IMSI catchers can capture sensitive data transmitted via mobile
networks, including login credentials, personal details, and
financial information, thereby creating opportunities for iden-
tity theft and fraudulent activities. Additionally, IMSI catchers
can be used to track the location of mobile devices that are
connected to them. Furthermore, these devices serve as poten-
tial entry points for cyberattacks, making connected devices
susceptible to malware deployment and data breaches. These
misuses can make the deployment of IMSI catchers by cyber
criminals or terrorists pose national security risks, potentially
targeting government agencies, military installations, critical
infrastructure and disrupting mobile communication services.
Disruptions during emergencies or critical events can create
chaos, hinder response efforts, and amplify the impact of
attacks. These threats encourage LEAs to adopt innovative AI
countermeasures in response to these challenges.

The uses of DL models in detecting IMSI catcher centre on
three main types of events indicating its presence. The first
is related to a sequence of network anomalies, such as the
network force down from 3G to 2G mode, the current cell has
no neighbouring cell, and the connection is not encrypted. The
second type of event is related to the baseband processor (BP)
activity in correlation with the phone’s application processor
(AP), in other words, the activity of BP and AP should be
timely correlated. The third type is related to signal strength,
as IMSI catchers often emit stronger signals than legitimate
cell towers.

B. CNN and LSTM Networks

Although CNNs are primarily designed for image-related
tasks, they can also be adapted for time series data through
two operations known as one-dimensional (1D) convolution
and pooling, the first is done by applying a one-dimensional
filter (also known as kernels) to the input sequences. This filter
convolves as a sliding window that scans through the time
series, identifying important deep features. Then in the second
operation, extracted features are passed through pooling layers
whose role is to extract the most important information from
the output of the convolutional layer. Lastly, a fully connected
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layer is applied to map the learned features from the sequential
data to the final output [13].

On the other hand, LSTM is based on using a combination
of memory cells and a series of gating mechanisms. It includes
a cell state, representing LSTM’s memory, and a hidden state,
which carries relevant information from previous time steps
to the current one. These memory cells interact with several
gating mechanisms: the forget gate, which determines what
information in the memory cell should be discarded; the
input gate, which decides what new information should be
added to the cell state; and finally, the output gate, which
determines what information the cell state should reveal as the
output. This combination improves gradient flow and enhances
the network’s ability to handle long-term dependencies and
variable-length sequences. These architectural advancements
and mechanisms make LSTMs highly effective in captur-
ing complex patterns, modeling long-term dependencies, and
learning from sequential data [14]

CNNs and LSTMs can form a powerful alliance for time
series classification by leveraging their unique capabilities
to learn the most discriminative features from raw data and
recognize deep temporal patterns.

C. Related Work

With the rapid advancements in technology, AI has the po-
tential to revolutionize traditional LEA practices by enhancing
investigation processes, improving predictive capabilities, and
increasing operational efficiency. From analyzing vast amounts
of data to identifying patterns and suspicious events, several AI
tools and solutions in different application areas have proven
to be effective assets in the fight against traditional crime
and cybercrime [15]. AI applications are already being used
to help LEAs detect and prevent crimes. Elluri et al. [16]
developed a crime prediction model to send high or low crime
alerts to LEAs using DL algorithms, while Chun et al. [17]
presented a neural network-based model to predict whether a
specific person will commit a new crime in the future using an
individual’s criminal charge history records. Yet, Saraiva et al.
[18] introduced a crime prediction and monitoring model that
uses various data sources, including historical crime records,
geographical information, and textual data from social media.
Al-Khater et al. [19] conducted a comprehensive review of
existing cybercrime detection techniques.

The majority of these works try to apply the knowledge
gathered in other domains such as video surveillance [20],
[21], face detection and recognition [22], [23], crypto-analysis
[24] towards crime prediction and prevention for helping
LEAs in their investigation. Usually, the process of detecting
anomalous behaviours requires a complete temporal analysis
of historical data to identify significant patterns or deviations.
Consequently, LEAs need to adopt temporal-based AI solu-
tions akin to those used in the cybersecurity domain, such
as in [25], a malware detector using LSTM was built to
extract behavioural features from time series data and CNN to
classify the converted features to either normal or malicious.
[26] Achieved great accuracy results by constructing a com-

bined CNN and LSTM network for malware classification.
In [27], the author proposed an intrusion detection system
based on a hybrid network of CNN and LSTM. In [28], the
author presented a phishing detection system using DL models
with CNN, LSTM, and LSTM+CNN approaches. Here are
additional research papers that focus on using deep learning
techniques to detect several cyber attacks [29], [30], [31].

More specifically, the starting point of this work is repre-
sented by the Mobile Network operational dataset that Van
Do et al. [32] have used to propose an ML-based detection
system that employs a dedicated anomaly detector for each of
the three primary contextual attributes indicating the presence
of IMSI catchers. The above-mentioned paper’s objective was
to show the potential of applying machine learning techniques
to facilitate the detection process and not complete implemen-
tation.

Inspired by the previous work mentioned above, we use
the same dataset to study how temporal and convolutional
deep learning classification models can be adopted and used
for detecting suspicious (criminal) behaviour modelled as a
multivariate time series. These models serve the purpose of
assisting LEAs in identifying suspicious events indicative
of IMSI catcher activity within a mobile network, thereby
enabling the provision of timely preemptive alerts.

III. METHODOLOGY

Leveraging AI technologies such as ML, DL, Natural Lan-
guage Processing, and behavioural analysis has transformed
the cybersecurity landscape, offering a high level of adapt-
ability, speed, and precision that was previously unattainable
through conventional methods. This synergy between AI and
cybersecurity encouraged us to aid LEAs and law enforcement
officers (LEOs) with new innovative AI solutions in order to
have the ability to anticipate, detect, and respond to criminal
threats with expertise.

Building on this progress, we were inspired to apply DL
techniques for time series data analysis like CNN and LSTM
to broader applications. By combining CNN and LSTM for
time series classification, we harness the strengths of both
algorithms to create intelligent and effective solutions. The
main goal of this work is not limited to IMSI catcher detection
but extends to let CNN and LSTM be the foundation for
a wider range of applications that can provide LEAs with
powerful AI tools to process and analyze complex historical
data, enabling them to identify suspicious deviations and
enhance their investigative practices. This, in turn, contributes
to preventing unlawful activities, supporting counterterrorism
efforts, and enhancing public safety.

To our knowledge, the proposed LSTM and CNN-LSTM
approaches are the first DL models of their kind, taking into
account the temporal aspects of suspicious events for detecting
IMSI catchers. To accomplish this mission, we have developed
a methodological process as shown in Figure 1 comprising
three main steps:
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• Data Collection and Preprocessing: This step involves
data cleaning, data transformation, data split and feature
selection.

• Models’ Configurations: In this step, we determine the
architectures and model hyperparameters to match the
experiment requirements.

• Model Evaluation: The model’s performance is evaluated
using relevant evaluation metrics.

Data Experiment Evaluation

 Collection

 Preprocessing

Model
Selection and

Configurations

Model
Training

Model
Testing

Fig. 1. Detailed flow of the overall methodological process

IV. EXPERIMENTAL FRAMEWORK

In this section, we provide a detailed overview of the dataset
collection in Subsection IV-A and present the carried data
preprocessing in Subsection IV-B. The models’ configurations
are shown in Subsection IV-C, evaluation metrics are explained
in Subsection IV-D, and in Subsection IV-E, we describe the
two experiments conducted to evaluate the performance of the
developed models:

A. Dataset

The dataset we are using was collected by reporters from a
Norwegian newspaper called Aftenposten 2 during an inves-
tigation aimed at determining whether IMSI catchers were in
use in the Norwegian capital, Oslo. Johansen et al. [33] used
a GSMK CryptoPhone® Baseband Firewall (BBFW) [34], a
device designed to protect against monitoring, eavesdropping,
and tapping of mobile communications, while also alerting
the user to potential IMSI catcher attacks. As previously
discussed in Subsection II-A, the CryptoPhone checks whether
signals originate from approved mobile operator base stations
by detecting various attributes that indicate the presence of
an IMSI catcher, including signal strength and ID number
matching. It also detects if mobile network encryption is turned
off or if the mobile device is transitioning from 3G/4G to
2G, which could be a sign of eavesdropping. Additionally,
it identifies if the mobile device is communicating on the
baseband and sending data without being in active use. The
log data from the CryptoPhone was cleaned, preprocessed, and
parsed to extract discriminative features and structure it into
an ML-usable format. The dataset has several primary features
that form the basis of the classification process, including the

2https://www.aftenposten.no/

previously mentioned attributes that indicate the presence of an
IMSI catcher. These features also include the activity time of
baseband processor in seconds, inbound and outbound phone
or data activity, signal strength, network operator, and the
source of information, whether it comes from the baseband’s
operating system or the mobile’s operating system. The general
classification of events according to the Technical Briefing of
GSMK CryptoPhone Baseband Firewall [35] is as follows:

• Class None represents the normal events.
• Class Low represents events with very low probability to

be suspicious.
• Class Medium represents events with medium probability

to be suspicious.
• Class High represents events with high probability to be

suspicious.
• Class Very High represents suspicious events.

B. Data Preprocessing

Fortunately, the dataset is well-organized, requiring minimal
cleaning since the original text data extracted from Crypto-
phone has already been transformed into categorical values.
Firstly, we explore the dataset to understand its structure and
the types of features present. All important features have
categorical values except two, which represent the activity time
in seconds and signal strength in ASU (Arbitrary Strength
Unit). Some features were cleaned by removing all irrelevant
text data (Nan) and imputing missing values with zeros so only
the numerical data are kept to have a reliable analysis. The
dataset’s class distribution reveals a significant imbalance issue
where class none vastly outnumber the other four classes. In
our case, we are primarily interested in identifying the events
that need immediate attention due to their high suspicion
levels and highlight them for further investigation by LEAs,
rather than categorizing them into multiple subgroups based
on severity of threat. Thus, the problem is framed as a
binary classification which is more practical for our real-
world scenario. The class none accounts for 97.5% of the
data instances, with the remaining 2.5% distributed among
the others. 70% of the dataset is allocated for training, and
the remaining 30% is reserved for testing the model, with 5%
of the training data designated for validation.

C. Configuration

In this subsection, we present an overview of nine different
architectures that will be evaluated and compared for their
performance in time series classification. As shown in Table
I, the first model, CNN I, is a basic CNN network which
consists of a 1D convolutional input layer, and a dense output
layer for making binary classification. Model CNN II includes
an additional dense hidden layer with 128 neurons. LSTM I
consists of only an LSTM input layer and a dense output layer,
whereas LSTM II introduces an additional hidden dense layer
with 128 neurons. Moving on to the fifth through eighth model
architectures, we leverage the potentialities of CNN+LSTM or
LSTM+CNN cascade hybrid architecture by using the output
of the CNN or LSTM layer as the input for the subsequent
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LSTM or CNN layer, respectively. CNN+LSTM I has a 1D
CNN input layer, LSTM hidden layer and dense output layer,
whereas CNN+LSTM II has a 1D CNN input layer, LSTM
and Dense as hidden layers, and again dense as the output
layer. LSTM+CNN I has an LSTM input layer, 1D CNN
hidden layer with 128 neurons, and dense output layer, while
LSTM+CNN II has an LSTM input layer, 1D CNN and dense
with 128 neurons as hidden layers, and dense output layer.
The CNN layer is responsible for extracting local features and
patterns, while the LSTM layer captures global and sequential
dependencies. In that sense, we can verify the importance of
the order of CNN and LSTM layers in effecting classification
results.

Finally, we construct a parallel architecture consisting of
two CNN and LSTM branches, each with its set of layer(s)
to process the input data independently. These branches are
concatenated before the final output layer for classification.
All 1D CNN layers have 128 filters, LSTM layers have 128
neurons and lastly, all dense output layers have one neuron that
outputs the classification probability between 0 and 1, outputs
with a probability higher than 0.5 are classified as suspicious.

TABLE I
OVERVIEW OF MODELS ARCHITECTURES

Architecture Input
Layers

Hidden Layers
(neurons)

Output
Layers

CNN I 1D CNN - Dense
CNN II 1D CNN Dense (128) Dense
LSTM I LSTM - Dense
LSTM II LSTM Dense (128) Dense

CNN+LSTM I 1D CNN LSTM Dense
CNN+LSTM II 1D CNN LSTM+Dense (128) Dense
LSTM+CNN I LSTM 1D CNN Dense
LSTM+CNN II LSTM 1D CNN+ Dense (128) Dense

Parallel CNN/LSTM CNN
LSTM Dense (128) Dense

D. Evaluation Metrics

The evaluation process of our models is mainly based on the
confusion matrix which provides a tabular representation that
summarizes the model’s predictions and actual class labels.
The rows of the matrix represent the number of predicted
classes, while the columns represent the actual class.

From the confusion matrix values, we can extract some
useful metrics that can be used to effectively evaluate the per-
formance of the developed models. Here are some commonly
used metrics [36]:

• Precision: it calculates the ratio of correctly classified
positives over total positive predictions.

Precision =
TP

TP + FP
(1)

• Recall: it calculates the ratio of correctly classified posi-
tives over total actual positives.

Recall =
TP

TP + FN
(2)

• F1-Score: it provides a balanced measure by considering
the harmonic mean of precision and recall.

F1− Score = 2 · precision · recall
precision+ recall

(3)

• Matthews Correlation Coefficient (MCC): it assesses the
quality of binary classification, taking into account both
false positives and false negatives. This makes it partic-
ularly useful for evaluating model performance in situ-
ations where the class distribution is imbalanced. MCC
score ranges from -1 to 1: 1 means a perfect prediction, 0
means the prediction is random, and -1 means the model
does the opposite of what it should.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

The precision, recall, and F1-score percentages reported
in the paper represent the macro average scores for the
two classes.

E. Experiments

1) Class Ambiguity: The first experiment focuses on three
case studies aimed at accurately assigning class labels to
each data sample. Classes low and medium do not have clear
assignments to the suspicious or non-suspicious categories,
leading to uncertainty in labeling these data samples. This
ambiguity revolves around whether data samples belonging
to these classes should be classified as non-suspicious or
suspicious. To address this issue, we need to refine the class
definitions across three case studies as illustrated in Figure
2 and observe how the developed models perform. The case
study yielding the best results will surely provide us with
the correct label assignment, and the top two models from
this case study will be selected for the second experiment. In
the first case study (CS I), only class none is categorized as
non-suspicious, while the remaining four classes are labeled
as suspicious. In the second case study (CS II), class low
is grouped with class none in the non-suspicious category,
while medium, high, and very high classes are assigned to the
suspicious category. Lastly, in the third case study (CS III),
only high and very high classes are considered suspicious,
while the others are assigned to the non-suspicious category.
As the introduced architectures in Subsection IV-C. For each
configuration, the experiment is repeated three times to assess
the repeatability of the results and the randomness of the
solutions.

2) Temporal Length: The objective of this second exper-
iment is to train the two models that exhibited the best per-
formance in terms of precision and recall simultaneously (F1-
Score) in the previous experiment with five different sequence
lengths (3, 5, 10, 20, 25) to find the optimal temporal length
of each model for our specific task. Given the significance
of the temporal order of data samples, and in order to capture
the temporal patterns and relations in the time series data, it is
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Non-Suspicious Suspicious

Low Medium

High Very
High

None

None

None

Low

Low

Medium

Medium

Very
High

High

High Very
High

i) Case
Study I

ii) Case
Study II

iii) Case
Study III

Fig. 2. Visual illustration of classes definitions refinement in the first
experiment

essential that the input fed into the model should be in the form
of a sequence. This sequence represents the history length
or time steps the model considers when making predictions.
Consequently, we use a sliding window to create overlapping
sequences of the dataset with adjustable length that moves
step-by-step through the entire series. Additionally, we con-
ducted three tests for each architecture at every sequence
length to ensure result repeatability.

V. EXPERIMENTAL STUDY

In this section, we present the evaluation results of the class
ambiguity experiment in Subsection V-A and the temporal
length experiment in Subsection V-B:

A. Class Ambiguity
As we can see from the results of CS I in Table

II, LSTM+CNN II and Parallel CNN/LSTM are the top-
performing architectures with the highest F1-Score (83.67%)
and the highest MCC (0.68) among all configurations followed
by LSTM II with f1-Score equals (83%). This suggests that
combining LSTM and CNN or using parallel CNN/LSTM
layers yields the best overall performance for the classification
task in Case Study I.

As depicted in Table III, LSTM II stands out as the
top-performing architecture in Case Study II. It achieves a
precision of 87%, indicating a low rate of false positives
(suspicious instances that are incorrectly predicted), and a
recall of 87.33%, indicating it captures a significant portion
of suspicious instances. The F1-Score is 86.67%, reflecting a
well-balanced performance between precision and recall. The
MCC is the highest among all architectures at 0.74, indicat-
ing a very strong agreement between predictions and actual

TABLE II
OVERVIEW OF WEIGHTED AVERAGE METRICS FOR CS I

Case Study I
Architecture Precision Recall F1-Score MCC

CNN I 83.67 74.33 77.33 0.57
CNN II 87.33 73.33 78.67 0.59
LSTM I 87.33 79.33 82.67 0.66
LSTM II 86.33 80.67 83 0.67

CNN+LSTM I 88.33 73.33 79 0.60
CNN+LSTM II 90.33 74.33 79.67 0.62
LSTM+CNN I 88 76.33 80.67 0.63

LSTM+CNN II 88.33 80 83.67 0.68
Parallel CNN/LSTM 87.67 80.67 83.67 0.68

outcomes. followed by the hybrid architecture CNN+LSTM I
with a slight difference.

TABLE III
OVERVIEW OF WEIGHTED AVERAGE METRICS FOR CS II

Case Study II
Architecture Precision Recall F1-Score MCC

CNN I 79.6 84.6 81.33 0.63
CNN II 86 81.33 83.33 0.67
LSTM I 86.67 86.33 85.67 0.72

LSTM II 87 87.33 86.67 0.74
CNN+LSTM I 86.33 86.67 86.67 0.73
CNN+LSTM II 90.67 79.33 83.67 0.69
LSTM+CNN I 84.67 86 85.33 0.70
LSTM+CNN II 85 84.67 84.67 0.70

Parallel CNN/LSTM 86.67 87 86.33 0.73

TABLE IV
OVERVIEW OF WEIGHTED AVERAGE METRICS FOR CS III

Case Study III
Architecture Precision Recall F1-Score MCC

CNN I 90 81.67 84.67 0.70
CNN II 94.33 83 87.67 0.76
LSTM I 90 87 88.33 0.77

LSTM II 97 85.33 90.33 0.81
CNN+LSTM I 86 83 84 0.69
CNN+LSTM II 95.67 82.67 88 0.77
LSTM+CNN I 92.67 85.3 88.33 0.77
LSTM+CNN II 93 85.67 88.67 0.78

Parallel CNN/LSTM 94.67 85 89 0.79

LSTM II emerges as the leading architecture in CS III
as shown in Table IV. It attains a precision rate of 97%,
signifying an exceptionally low occurrence of false positives,
alongside a recall rate of 85.33%. The resulting F1 Score, at
90.33%, indicates a balanced performance that encompasses
both precision and recall. Parallel CNN/LSTM architecture
shows strong performance with a precision of 94.67% and
a recall of 85%. The F1-Score is 89%, indicating a balanced
performance. The MCC is 0.79, emphasizing that combining
CNN and LSTM improves the overall performance of the
model.

B. Temporal Length
In this experiment, we trained the two top-performing

models of CS III, LSTM II and Parallel CNN/LSTM, using
five different sequence lengths (3, 5, 10, 20, and 25) to assess
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how this parameter can impact classification quality. Figure 3
shows how the precision of two models, LSTM II and Parallel
CNN/LSTM changes as the sequence length varies. For most
sequence lengths, LSTM II got better precision except for 25
we observed a steep drop compared to Parallel CNN/LSTM.
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Fig. 3. Impact of Sequence Length on Precision: LSTM II vs. Parallel
CNN/LSTM

Figure 4 illustrates recall values as the sequence length
varies for the two models. For LSTM II, recall remains
relatively stable as sequence length increases from 3 to
20. However, there is a noticeable drop in recall when the
sequence length is 25. while on the other hand, Parallel
CNN/LSTM, shows some variation in recall percentages with
changing sequence length. It starts at a relatively high value
and then gradually decreases as sequence length increases.
Overall, ”LSTM II” tends to have higher recall compared to
Parallel CNN/LSTM at specific lengths (10 and 20), while
Parallel CNN/LSTM performs better when the sequence length
reaches 25.

Across most sequence lengths, the LSTM II model tends
to have a slightly higher F1-Score compared to the Parallel
CNN/LSTM model as shown in Figure 5. Notably, both
models experience a significant drop in F1-Score when the
sequence length is 25, indicating that longer sequence lengths
may not be optimal for this task.

We believe that the Parallel CNN/LSTM model performs
better than LSTM II at longer sequences due to the dimension-
ality reduction that CNN layers combined with pooling layers
can do in the input data while retaining essential features. This
reduction makes it more manageable for the LSTM part of
the model to process longer sequences, as it deals with lower
dimensional representations.

C. Discussion

The results affirm the transformative potential of AI in
enhancing LEAs’ capabilities and contribute to the broader

5 10 15 20 25
Sequence Length

70

75

80

85

90

95

100

Re
ca

ll 
(%

) 

Sequence Length vs Recall 
LSTM II
Parallel CNN/LSTM

Fig. 4. Impact of Sequence Length on Recall: LSTM II vs. Parallel
CNN/LSTM
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Fig. 5. Impact of Sequence Length on Precision: LSTM II vs. Parallel
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mission of improving security and public safety. Furthermore,
the presented models are intended to serve as the foundation
for the practical deployment of a wide range of AI tools
that include time related data analysis to enhance LEAs’
autonomy in dealing with suspicious threats in public spaces.
Notably, LEAs necessitate legal access to mobile networks
to collect and feed data into the proposed models for the
detection process of any suspicious behaviors within the
network. Operational data collection of mobile networks by
LEAs should follow legal regulations, ethical considerations
and legitimate purposes while implementing these models.
This entails obtaining legal authorization, ensuring privacy
protection, minimizing data collection, and complying with
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human rights standards to balance between public security
needs and the protection of individual privacy rights. However,
the initial experiment results reveal that CNN architectures
exhibit lower performance when compared to hybrid CNN and
LSTM architectures, as well as parallel CNN/LSTM models.
This suggests that the addition of LSTM layers has notably
improved the overall performance of the models. Additionally,
the results highlight certain limitations of this research study.
One limitation is related to the class overlap problem observed
in the class medium. The classification results improved in
CS III compared to CS I and CS II, where those data points
were assigned to the non-suspicious class. To sum up, the high
class exhibited a stronger association with the suspicious class
compared to the medium class, despite both classes represent-
ing possible suspicious events but with less probability. The
Second limitation is related to that many European countries
are planning to gradually shut down 2G and 3G networks and
transition to more advanced and secure generations like 4G
and 5G which are better equipped to mitigate the threat of
IMSI catcher attacks even though GSM is still the standard
service in most parts of the world. This transition may impact
the relevance of the research findings in regions where older
network technologies are still in use. However, the results
of the second experiment show that the temporal length is a
double-edged sword parameter, it can affect the quality of clas-
sifications either positively or negatively. Longer sequences
often lead to better predictions because they provide more
information about the underlying patterns and relationships in
the data but at the same time, they may increase the risk of
overfitting and the model start memorizing the training data
rather than learning general patterns. The results of the second
experiment clearly demonstrate that, in our case, there is a drop
in classification quality as the sequence length increases due to
the imbalanced nature of the dataset. LSTM II outperformed
Parallel CNN/LSTM across all proposed lengths except for 25.

VI. CONCLUSION

In this paper, we present a DL approach for IMSI catcher
detection using CNN and LSTM algorithms. Our comparative
study evaluates CNN, LSTM, hybrid cascade CNN+LSTM,
and parallel CNN/LSTM models for multivariate time series
classification. Notably, our study highlights the significant
potential of LSTM II and Parallel CNN/LSTM models, achiev-
ing F1-Score percentages of 90.33% and 89%, respectively,
in detecting highly suspicious events that may signal IMSI
catcher presence. Furthermore, the paper also reveals the
negative impact on LSTM II and Parallel CNN/LSTM mod-
els’ performance if we increase the sequence length. This
work is the first DL IMSI catcher detection network-based
solution that takes into account the temporal patterns of
suspicious events that may be timely associated with other
attacks instead of conventional portable devices monitoring
radio access networks. These models go beyond IMSI catcher
detection and play a crucial role in enhancing security, prevent-
ing crime, supporting counterterrorism, generating accurate
predictions, mitigating human bias in decision-making, and

ultimately making the public space safer. By leveraging the
proposed CNN and LSTM models, LEAs can gain access to
advanced analytical tools capable of processing, analyzing, and
interpreting complex historical time series data sources that
empower them to identify suspicious deviations effectively
and enhance their investigative practices. However, future
research directions should explore novel data preprocessing
approaches to address the class overlap problem and adopt
new resampling techniques for categorical time series data to
prevent the creation of a non-representative dataset that could
lead to the loss of its real-world temporal patterns, ensuring
more robust and accurate analysis. Additionally, we need
to develop more advanced AI models to detect and prevent
evolving security threats in advanced mobile technologies such
as 5G. The limited access to data for AI technologies in
crime and counterterrorism applications is primarily due to
data sensitivity and privacy concerns. Such data often contains
personal information, surveillance data, or criminal records.
Balancing security needs with data access remains a complex
challenge. To advance the effective use of predictive AI in
LEA operations, concerted efforts and dedicated research are
needed to tackle these complex issues and bridge the gap
between data access and security to expand the AI applicability
to address various evolving threats in LEAs practices.
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