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Abstract—In the past few years, some alternatives to the Or-
thogonal Frequency Division Multiplexing (OFDM) modulation
have been considered to improve its spectral containment and its
performance level in the presence of heavy Doppler shifts. This
paper examines a novel modulation, named Doppler-Resilient
Universal Filtered MultiCarrier (DR-UFMC), which has the
objective of combining the advantages provided by the Universal
Filtered MultiCarrier (UFMC) modulation (i.e., better spectral
containment), with those of the Orthogonal Time Frequency
Space (OTFS) modulation (i.e., better performance in time-
varying environments). The paper contains the mathematical
model and detailed transceiver block scheme of the newly de-
scribed modulation, along with a numerical analysis contrasting
DR-UFMC against OTFS, OFDM with one-tap frequency domain
equalization (FDE), and OFDM with multicarrier multisymbol
linear MMSE processing. Results clearly show the superiority,
with respect to the cited benchmarks, of the newly proposed
modulation in terms of achievable spectral efficiency. Interest-
ingly, it is also seen that OFDM, when considered in conjunction
with multicarrier multisymbol linear minimum mean squares
error (MMSE) processing, performs slightly better than OTFS
in terms of achievable spectral efficiency.

I. INTRODUCTION

Future 6G wireless networks are being envisioned with
several challenging use cases, including communication in
environments with extreme mobility. Examples of such sce-
narios include high-speed trains, drones, and communications
through non-terrestrial networks. The fast movement of at least
one communication terminal creates rapid variations in the
channel and reduces the coherence time, which can negatively
impact the performance of traditional OFDM modulation with
one-tap FDE. In order to overcome such limitation, the OTFS
modulation has been proposed few years ago by researchers of
the Silicon Valley tech company Cohere Technologies [1, 2].
OTFS is a two-dimensional modulation scheme in which infor-
mation symbols are multiplexed in the delay–Doppler domain;
it is claimed to be robust against both frequency and time se-
lectivity of the wireless mobile channel since each information
symbol is spread, by means of a 2-D Fourier transform, on a
grid of the time-frequency plane. As recognized in [3], OTFS
modulation can be realized by adding a pre-processing block
before a traditional modulator in the frequency-time domain
such as the OFDM modulator at the transmitter, and a corre-
sponding post-processing block after a traditional demodulator

in the frequency-time domain such as OFDM demodulator at
the receiver. In its basic formulation, thus, OTFS still retains
many of the disadvantages of OFDM in terms of out-of-band
(OOB) emission and, in some implementations, need for a
cyclic prefix (CP). Reference [4] is one of the first research
work providing a fair comparison between OTFS and its direct
competitor and widely used OFDM. The authors present such
a fair comparison between the two digital modulation formats
in terms of achievable communication rate also addressing the
problem of channel estimation for the two modulations. In
[5], authors derive the explicit input-output relation describing
OTFS modulation and demodulation (mod/demod). Then the
cases of ideal pulse-shaping waveforms (that satisfy the bi-
orthogonality conditions) and rectangular waveforms (which
do not) are analyzed. The study also shows through numerical
results the superior error performance gains of the proposed
uncoded OTFS schemes over OFDM under various channel
conditions.

As already commented, while OTFS generally outperforms
OFDM in the presence of heavy Doppler shifts, in its basic im-
plementation suggested in [3] it shares with OFDM a reduced
spectral efficiency. In this paper, to circumvent this drawbacks,
we explore a novel modulation format, that we name Doppler-
Resilient Universal Filtered MultiCarrier (DR-UFMC) mod-
ulation, that merges together the advantages of OTFS (i.e.,
robustness in time-varying environments) with those of the
UFMC modulation [6, 7], i.e. better spectral containment and
no need for the CP. Specifically, this paper makes the following
contribution: first of all the full continuous-time mathematical
derivation of the transmitted and received signal for the DR-
UFMC modulation is developed; next, a full comparison of
the DR-UFMC modulation versus OTFS, OFDM with one-
tap FDE and with multicarrier multisymbol processing is
presented for time-varying environment, in terms of achieved
Signal-to-Interference plus Noise-Ratio (SINR), normalized
Mean Square Error (MSE), and Achievable Spectral Efficiency
under OOB emission constraints.

This paper is organized as follows. Next section contains
a review of the OTFS modulation scheme, while Section
III is devoted to the exposition of the newly proposed DR-
UFMC modulation. Section IV contains the derivation of the
expressions for the considered performance measures, and
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presents the numerical results of the paper. Finally, concluding
remarks are given in Section V.

II. A BRIEF REVIEW OF OTFS

Fig. 1 shows a block scheme of the OTFS transceiver. The
matrix XDD of size K × N contains the KN information
symbols in the delay-Doppler domain, where K and N
are the numbers of resource units along the delay dimen-
sion and Doppler dimension, respectively. The pre-processing
block performs an inverse symplectic finite Fourier transform
(ISFFT) as follows:

XFT = FKXDDFHN (1)

where FK and FN represent the isometric DFT matrices
of size K and N , respectively. Then, the 2D block XFT

in the frequency-time domain is transformed to the 1-D
transmit signal through a traditional OFDM modulator, with
an oversampled IFFT operation to emulate continuous time
subcarriers. Denoting by Os the oversampling factor, we have

S = W
H

K,Os
XFT , (2)

where the (`,m)-th entry of the matrix WK,Os is defined as

WK,Os
(`,m) =

1√
KOs

e−j2π
(m−1)(`−K/2−1)

KOs (3)

with ` = 1, . . . ,K and m = 1, . . . ,KOs. Each column of the
matrix S can be thus seen as an OFDM symbol. Combining
Eqs. (1)-(2), we have: S = W

H

K,Os
FKXDDFHN . The CP is

included in the transmitted signal through the matrix

ĀNCP = [IKOs(KOs −NCP + 1 : KOs, :); IKOs ], (4)

with Ix the identity matrix of order x. Letting SCP = ĀNCPS,
the 1-D signal to be transmitted is obtained through column-
wise vectorization of the matrix SCP, i.e.: s = vec{SCP}. At
the receiver, the (KOs + NCP + Lch − 1)N -th dimensional
received signal r can be written as

r =
√
PTMh,Ns + w, (5)

where PT is the transmitted power, w is the AWGN contri-
bution, while Mh,N describes the channel effect. In particu-
lar, denoting by g(·) the continuous-time convolution of the
transmit and receive shaping filters, by νp the Doppler shift
associated to the p-th path of the channel, by hp the amplitude
of the p-th path of the channnel, and letting T̃s = Ts/Os, with
Ts the OFDM signaling interval 1/(K∆f ), the time-variant
channel can be expressed as [3]

h
(i)
r,` =

P−1∑
p=0

hpg(`T̃s − τp)ej2πνp[(`+r+i−1)T̃s−T̃s/2], (6)

for ` = 1, . . . , Lch, i = 1, . . . , N . Based on the above
notation, the channel matrix in (5) is expressed as Mh,N =

blckdiag
(
M

(1)
h , . . . ,M

(N)
h

)
, where the (r, c)-th entry of

the [(KOs + Lch − 1)× (KOs +NCP)]-dimensional matrix
M

(i)
h are defined as

M
(i)
h (r, c) =

{
h
(i)
r,r−c if 0 < r − c ≤ Lch

0 otherwise
(7)

The OTFS demodulation at the receiver consists of the
traditional OFDM demodulator and a post-processing block.
The OFDM demodulator transforms the received signal r
into a 2-D block in the frequency-time domain YFT with
dimensions K×N . Specifically, the vector r is first rearranged
as a matrix R of size (KOs + NCP + Lch − 1) × N , i.e.,
R = invec{r}, where each column vector of R can be
interpreted as a received OFDM symbol. Then, the CP is
removed through the CP removal matrix RNCP

, defined as
RNCP

= [0KOs×NCP
, IKOs×KOs+Lch−1], and the received

signal after CP removal can be written as Z = RNCP
R. It

can be shown that the i-th column of Z is expressed as

Z(:, i) =
√
PTHiS(:, i) + V(:, i) =
√
PTHiW

H

K,Os
FKXDDF∗N (:, i) + V(:, i)

(8)
where V = RNCP

W and Hi = RNCP
M

(i)
h ĀNCP

is a
(KOs ×KOs)-dimensional matrix. Applying the KOs-point
oversampled FFT on each OFDM symbol, i.e., on each col-
umn of the matrix Z, we obtain the received 2-D K × N -
dimensional block YFT = WK,OsZ in the frequency-time
domain. Then, in the post-processing block, YFT is trans-
formed into the 2-D data block YDD in the delay-Doppler
domain through a symplectic finite Fourier transform (SFFT):

YDD = FHKYFTFN = FHKWK,OsZFN =

FHKWK,Os

N∑
i=1

Z(:, i)FN (:, i)T
(9)

By substituting (8) into (9) we obtain

YDD =
√
PT

N∑
i=1

FHKWK,Os
HiW

H

K,Os
FKXDD ×

F∗N (:, i)FN (:, i)T + VDD

(10)
with VDD = FHKWK,OsVFN . We now denote the (k, n)-
th element of YDD, XDD and VDD as Y DDk,n , XDD

k,n , V DDk,n ,
respectively, where k = 0, . . .K − 1 and n = 0, . . . , N − 1.
Upon defining Bi = FHKWK,Os

HiW
H

K,Os
FK , the following

expression can be shown to be obtained for Y DDk,n :

Y DDk,n =
√
PT
N

K−1∑
k′=0

N−1∑
n′=0

XDD
k′,n′

N∑
i=1

Bi(k, k
′)e−j2π(i−1)

n−n′
N + V DDk,n .

(11)
Let us now define the equivalent channel response in the
Delay-Doppler domain as

BDDk,k′,n,n′ =

N∑
i=1

Bi(k, k
′)e−j2π(i−1)

n−n′
N . (12)



Figure 1. OTFS transceiver architecture with oversampled FFT and IFFT operations

Combining Eqs. (11) and (12), we obtain

Y DDk,n =

√
PT
N

K−1∑
k′=0

N−1∑
n′=0

XDD
k′,n′B

DD
k,k′,n,n′ + V DDk,n (13)

Given (13), and denoting by y and x the vectorized versions of
YDD and XDD, it can be finally shown that for the considered
OTFS modulation with oversampled OTFS the following linear
relationship holds:

y = Ψx + v (14)

where v contains the AWGN contribution, and Ψ is a matrix
whose entries are written as:

[Ψ] (nK + k + 1, n′K + k′ + 1) =

√
PT
N

BDDk,k′,n,n′ , (15)

with k, k′ = 0, . . .K − 1 and n, n′ = 0, . . . , N − 1.

III. THE DR-UFMC MODULATION

The transceiver block scheme of the newly proposed DR-
UFMC modulation is reported in Fig. 2. As it can be seen,
an UFMC transmitter is considered in place of the OFDM
transmitter after the ISFFT operation. Again, we assume that
the data symbols are arranged in the (K × N)-dimensional
matrix XDD and that they go through the ISFFT trans-
formation leading to the matrix XFT . With regard to the
UFMC modulator, we assume that the K subcarriers are split
in B subbands of D subcarriers each (thus implying that
K = BD). Each subband is filtered using a passband FIR
filter. A customary choice is to resort to Dolph-Chebyshev
discrete-time window, that permits controlling the side-lobes’
level with respect to the peak of the main lobe. The matrix
XFT is thus firstly processed by an oversampled IFFT on
each subband of D subcarriers. We thus obtain B matrices as
follows

Si = W
H

K,Os
PiX

FT (16)

with i = 0, . . . , B − 1 and the selection matrices Pi, i =
0, . . . , B − 1 are defined as

Pi = diag

[ 0 . . . 0︸ ︷︷ ︸
iD

1 . . . 1︸ ︷︷ ︸
D

0 . . . 0︸ ︷︷ ︸
K−(i+1)D

]

 , i = 0, . . . , B−1 .

(17)
Then each subband is individually filtered via the Toeplitz
matrices Gi, with i = 0, . . . , B − 1. Precisely, letting g =
[g0, g1, . . . , gL−1]T be the L-dimensional vector representing
the Dolph-Chebyshev prototype filter, and letting Fi = D−1

2 +
iD − K

2 denote the normalized frequency shift of the filter
tuned to the i-th subband, Gi is a Toeplitz [(KOs +L− 1)×
KOs]-dimensional matrix describing the discrete convolution
operation with the filter gi, whose `-th element is defined as
gi,` = gie

j2π
Fi`

KOs , for i = 0, . . . , B − 1, and ` = 0, . . . , L −
1. The vectors at the output of the subband filters are then
added, leading to the [(KOs+L−1)×N ]-dimensional matrix
X̃UFMC

X̃UFMC =

B−1∑
i=0

GiW
H

K,Os
PiX

FT = PUFMCXFT , (18)

where we have defined PUFMC =
∑B−1
i=0 GiW

H

K,Os
Pi. To

obtain a (KOs × N)-dimensional matrix, XUFMC say, we
rely on the concept of continuous packet transmission in
UFMC as introduced in [7]: no guard time among consecutive
packets is thus assumed in order to increase the modulation
spectral efficiency. The (k, n)−th entry of the resulting matrix
XUFMC is reported in Eq. (19), shown at the top of the next
page, ∀k = 1, . . .KOs and n = 1, . . . , N . Note that in Eq.
(19) we are removing the last L−1 symbols of the last column
of X̃UFMC in order to transmit a 1-D signal with length
KOsN as it happens with the OTFS modulation. To this end,
we will use later the matrix IL−1 = [IKOsN ,0KOsN×L−1].
The 1-D signal s̃ to be transmitted is thus:

s̃ = vec
(
XUFMC

)
. (20)



Figure 2. DR-UFMC transceiver scheme consists of an UFMC transceiver with Doppler Resilient (DR) pre- and post-processing.

XUFMC(k, n) =

{
X̃UFMC(k, n) if (n = 1 and k ≤ KOs) or (n > 1 andL ≤ k ≤ KOs)
X̃UFMC(k, n) + X̃UFMC(k +K,n− 1) if(n > 1 and k ≤ L− 1)

(19)

Let us now define ŨUFMC as a [(KOsN+L−1)×KOsN ]-
dimensional matrix with the following [(KOs+L−1)×KOs]-
dimensional non-zero blocks

ŨUFMC((n− 1)KOs + 1 : nKOs + L− 1,
(n− 1)KOs + 1 : nKOs) = PUFMC ,

(21)

with n = 0, . . . , N−1. Define also UUFMC = IL−1ŨUFMC .
Using Eqs. (18) and (1), it can be shown that s̃ can be written
as

s̃ = UUFMCvec
(
XFT

)
= UUFMCvec

(
FKXDDFHN

)
(22)

Exploiting the properties of the vec(·) operator Eq. (22) can
be written as

s̃ = UUFMC (F∗N ⊗ FK) x, (23)

where x = vec
(
XDD

)
and ⊗ denotes the Kronecker product.

The signal s̃ is thus transmitted on the time-varying channel
already described in the previous section. The (KOs +Lch−
1)N -th dimensional received signal r̃ can be written as

r̃ =
√
PTM̃h,N s̃ + w̃, (24)

where w̃ is the AWGN contribution, and M̃h,N =

blckdiag
(
M̃

(1)
h , . . . , M̃

(N)
h

)
. The entries of the

[(KOs + Lch − 1)× (KOs)]-dimensional matrix M̃
(i)
h

can be expressed as in Eq. (7). At the receiver, the matrix R̂
of size KOs + Lch − 1 × N is formed, i.e., R̂ = invec{r̃},
where each column vector of R̂ can be interpreted as a
received UFMC symbol:

R̂(:, i) =
√
PTM̃

(i)
h XUFMC(:, i) + Ŵ(:, i) (25)

with i = 1, . . . , N and Ŵ = invec{w̃}. Using the clas-
sical UFMC processing [7], the last Lch − 1 symbols are

removed from the received signal R̂. Defining RLch−1 =
[IKOs

0KOs,Lch−1], the cancellation of such symbols results
in R̃ = RLch−1R̂. It can be shown that the n′-th column of
R̃ is expressed as

R̃(:, n′) =
√
PT H̃n′X

UFMC(:, n′) + Ṽ(:, n′) (26)

with Ṽ = RLch−1Ŵ and H̃n′ = RLch−1M̃
(n′)
h . Applying

the oversampled FFT operation on each UFMC symbol, we
obtain the received K × N - dimensional matrix ỸFT in the
frequency-time domain as ỸFT = WK,OsR̃. Next, we apply
the SFFT, which results in

ỸDD = FHKỸFTFN = FHKWK,OsR̃FN =
N−1∑
n′=0

FHKWK,Os
R̃(:, n′)FN (:, n′)T

(27)

By substituting (26) in (27), we obtain

ỸDD =

√
PT

N−1∑
n′=0

FHKWK,Os
H̃n′X

UFMC(:, n′)FN (:, n′)T + ṼDD

(28)
with ṼDD = ṼFN . Upon defining matrix the (KOs × N)-
dimensional An′ = XUFMC(:, n′)FN (:, n′)T , we can show
that its entries can be written as

An′(`,m) =
1√
N

XUFMC(`, n′)e−j2π
nm
N , (29)

n′ = 0, . . . , N−1, ` = 0, . . . ,KOs−1 and m = 0, . . . , N−1.
Upon some algebraic manipulations, we obtain that the (k, n)-



th entry of the received matrix ỸDD can be obtained as

ỸDD(k, n) =

√
PT

N−1∑
n′=0

KOs−1∑
k′=0

FHKWK,Os
H̃n′(k, k

′)An′(k
′, n) + VDD(k, n)

=

√
PT√
N

N−1∑
n′=0

KOs−1∑
k′=0

B̃n′(k, k
′)XUFMC(k′, n′)e−j2π

nn′
N

+ṼDD(k, n)
(30)

with k = 0, . . . ,K − 1, n = 0, . . . , N − 1 and B̃n′ =
FHKWK,Os

H̃n′ . Manipulating (30) and using Eq. (23), we ob-
tain for the DR-UFMC modulation the following input/output
relationship between the received data and the transmitted data
symbols:

ỹ = Ψ̃x + ṽ (31)

where ỹ and x are the vectorized versions of ỸDD and XDD,
respectively, and ṽ contains the AWGN contribution. In (31),
Ψ̃ is defined as

Ψ̃ = ΨUFMCUUFMC (F∗N ⊗ FK) , (32)

where we used Eq. (23) and the entries of ΨUFMC are written
as:

[ΨUFMC ] (nK + k + 1, n′KOs + k′ + 1) =√
PT√
N

B̃n′(k, k
′)e−j2π

nn′
N ,

(33)

with k = 0, . . .K − 1, k′ = 0, . . .KOs − 1 and n, n′ =
0, . . . , N − 1.

IV. PERFORMANCE MEASURES AND RESULTS

Table I shows the considered simulation setup. We use the
Extended Vehicular A (EVA) channel model [8]. Let νmax =
fvmax

c be the maximum Doppler shift, with f the frequency
in Hz, vmax the user’s speed in m/s and c the speed of light
in m/s. We assume that a single Doppler shift is associated
with the p-th path and follows the classic Jakes spectrum, i.e.,
νp = νmax cos (θp) where θp is uniformly distributed over
[−π, π].

First of all, we have to investigate on the power-spectral-
density of the OTFS and DR-UFMC signals in order to carry
out a performance comparison with the same level of OOB
emissions for both modulations. Fig. 3 shows the PSD of
OTFS and DR-UFMC transmitted signal. It is clearly seen that
the spectral occupation of DR-UFMC is considerably lower
than OTFS: the number of subcarriers at the edge, say 2NG,
to be nulled in order to guarantee that the emissions out of the
nominal bandwidth [−K∆f/2,K∆f/2] are below the OOB
threshold δOOB = −30 dB is 60 for the OTFS modulation
(and also for OFDM) and 36 for the DR-UFMC modulation.

Next, we provide the definition of the Spectral Efficiency
(SE) associated to the k-th subcarrier in the n-th symbol, i.e.:

SEk,n = ξ log2 (1 + SINRk,n) (34)

where SINRk,n is the corresponding SINR (set to zero if
k is one of the guard subcarriers to be nulled due to the

Table I
SIMULATION PARAMETERS

Name Meaning Value
f Carrier frequency 28 GHz
∆f subcarrier spacing 120 KHz
K number of subcarriers 128
N number of symbols 16
TCP duration of the cyclyc prefix in

OTFS
0.586 µs

W = K∆f system bandwidth 15.36 MHz
T = 1/∆f symbol interval 8.33 µs
Os oversampling factor 10
L length of the Dolph-Chebyshev

FIR filter in DR-UFMC
60

AdB OOB attenuation of the Dolph-
Chebyshev FIR filter in DR-UFMC

100

D number of subcarrier in each sub-
band in DR-UFMC

16

δOOB OOB threshold -30 dB

OOB emissions constraint) and ξ is the efficiency factor of
the modulation scheme. For OTFS, we have ξ = T

T+TCP
,

where the symbols T and TCP are defined in Table I. For
DR-UFMC, instead, ξ = 1 since, according to the scheme
in [7], no CP is used. The spectral efficiency averaged over
all the subcarriers and symbols can be thus defined as SE =
ξ
KN

∑K
k=1

∑N
n=1 log2 (1 + SINRk,n). Finally, we provide the

SINRs expressions. The input-output linear relationships (14)
and (31), can be written as

y = Cx + w =

NK∑
i=1

Cixi + w, (35)

where, for OTFS y = y, C = Ψ and w = v, while for DR-
UFMC y = ỹ, C = Ψ̃ and w = ṽ. In Eq. (35) Ci denotes
the i-th column of the matrix C. Resorting to linear MMSE
detection, the estimate of the symbol transmitted on the k-th
subcarrier in the n-th symbol can be written as

x̂(n−1)K+k = CH
(n−1)K+k

(
CCH + σ2

wIKN
)−1︸ ︷︷ ︸

,dH
(n−1)K+k

y ,
(36)

with σ2
wIKN the covariance matrix of noise. The SINR ex-

pression on the k-th subcarrier in the n-th symbol can be thus
written as follows

SINRk,n =

∣∣∣dH(n−1)K+kC(n−1)K+k

∣∣∣2∑NK
j=1

j 6=(n−1)K+k

∣∣∣dH(n−1)K+kCj

∣∣∣2+σ2
w‖d(n−1)K+k‖2

(37)
Given (37), the net SINR per subcarrier and symbol can be
defined as the average SINR across the non-null subcarriers:

SINRNG
=

1

(K − 2NG)N

K−NG∑
k=NG+1

N∑
n=1

SINRk,n. (38)

Figs. 4 and 5 show the performance in terms of net SINR
and of average spectral efficiency per subcarrier and symbol



-60 -40 -20 0 20 40 60

f [MHz]

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
S

D

OTFS

DR-UFMC

OOB threshold

-10 0 10
-31

-30

-29

Figure 3. PSD of DR-UFMC and OTFS for the parameters of Table I.

0 5 10 15 20 25 30 35 40 45 50

SNR [dB]

-10

0

10

20

30

40

50

N
et

 S
IN

R
 p

er
 s

u
b

ca
rr

ie
r 

an
d

 s
y

m
b

o
l 

[d
B

]

OTFS, v
max

=50 km/h

OTFS, v
max

=500 km/h

DR-UFMC, v
max

=50 km/h

DR-UFMC, v
max

=500 km/h

OFDM - Full, v
max

=50 km/h

OFDM - Full, v
max

=500 km/h

OFDM - FDE, v
max

=50 km/h

OFDM - FDE, v
max

=500 km/h

Figure 4. Net SINR per subcarrier and symbol versus SNR, for two different
values of radial velocity.

versus the SNR, with the aim of comparing DR-UFMC, OTFS,
OFDM with full multicarrier multisymbol processing1, and
OFDM with one-tap FDE. Two different values of the maxi-
mum speed of the user vmax are chosen, namely 50 km/h and
500 km/h. Inspecting the figures, the following conclusions
can be drawn: (a) in terms of net SINR, OFDM with full
processing, OTFS and DR-UFMC achieve approximately the
same performance, while OFDM with one-tap FDE exhibits an
heavy performance degradation, especially for large values of
vmax; (b) OTFS, DR-UFMC and OFDM with full processing
are almost insensitive to the value of the maximum speed;
(c) in terms of SE, instead, the net superiority of DR-UFMC
with respect to the other competing alternatives is clearly
seen; again, OFDM with one-tap FDE achieves the worst
performance.

V. CONCLUSIONS

This paper has introduced a novel modulation format,
named DR-UFMC, which is to be intended as an evolution

1This descends from the OTFS derivation in the special case in which
the ISFFT and the SFFT blocks are removed.
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Figure 5. Average Spectral Efficiency per subcarrier and symbol versus SNR,
for two different values of radial velocity.

of OTFS. This modulation has been shown to exhibit both
robustness to Doppler shifts and good properties of spectral
containment, so it is to be considered a better alternative
to OFDM than OTFS. Current research is focused on the
derivation of suitable channel estimation schemes and data
detectors for the newly introduced modulation scheme.
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