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Abstract. This paper deals with the synthesis of Oldham mechanisms with
inclined and/or orthogonal slots for three-finitely separated positions. In particular,
the pole triangle and its circumcircle, along with the corresponding mirror circles,
are determined in order to apply the synthesis procedure. The epitrochoid cou-
pler curves are also determined and implemented in a whole synthesis algorithm,
which has been validated by means of several significant examples. Moreover, a
suitable comparison with the corresponding infinitesimal motion is carried out.
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1 Introduction

The kinematic synthesis of a rigid body guidance mechanism is related to designing
linkages to guide rigid bodies through prescribed positions, with precision and accu-
racy. This process integrates principles of kinematics and mechanical design to create
linkages that ensure controlled movement and the goal is to develop robust mechanisms
that fulfill desiredmotion requirements for various engineering applications [1–6]. These
techniques can be applied to any kind of kinematic chains, such as the one of the double-
slidermechanisms. Thesemechanisms are often used in applicationswhere precise linear
motion is required, such as in assembly machines, precision instruments, or packaging
equipment, but also for the torque transmission between shafts, such as the generalized
Oldham coupling [7, 8]. The synthesis of three-poses rigid body guidance mechanisms
was first proposed in [9], while this paper is focused on the synthesis of Oldham mecha-
nisms by devoting additional attention to the epitrochoid coupler curves. The rigid body
guidance synthesis can be combined with the use of geometric loci, such as the inflec-
tion circle, that can be also used as an analysis tool [10, 11]. Another important analysis
tool, the centrodes, can offer valuable insights to designers during the synthesis stage
providing essential information for mechanism creation [12–15].

This paper deals with the synthesis of Oldham mechanisms with inclined and/or
orthogonal slots for three-finitely separated positions. The epitrochoid coupler curves
are also determined and implemented in a whole synthesis algorithm, which has been
validated by means of several significant examples.
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2 Synthesis of Oldham Mechanisms

Referring to Fig. 1, supposed assigned the three finitely separated positions A1B1, A2B2
and A3B3, the pole triangle P12, P23 and P13, its circumcircle, along with the three
mirror circles Γ 1, Γ 2 and Γ 3 passing through the cardinal point HC , which is also the
orthocenter of the pole triangle, have been determined for synthesis purposes.

As first reported in [9], the kinematic synthesis of linkages for three-poses rigid-
body can be formulated by applying the Suh & Radcliffe method, which makes use of
displacement matrices. In fact, a rigid body displacement from a first i-pose to the second
j-pose that can be sketched through the segments A i −B i and A j −B j, respectively, is
carried out through the homogeneous displacement matrix:

D i j =
⎡
⎣
cosϑ i j − sin ϑ i j xj − xi cosϑ i j + yi sin ϑ i j

sin ϑ i j cosϑ i j yj − xi sin ϑ i j − yi cosϑ i j

0 0 1

⎤
⎦ (1)

which is obtained by two basic displacement matrices, a rotation matrix of the counter-
clockwise angle ϑ i j about the origin O of the fixed frame OXY, and a translation matrix
from point A i R that is the image of A i = (xi, yi) after the rotation, up to the point
A j

(
xj, yj

)
. Thus, assigning the position vectors rAi and rAj of point A, as follows

rAi = [
xAi yAi 1

]T
and rAj = [

xAj yAj 1
]T

(2)

along with the relative rotation angle ϑ i j, the displacement matrix Dij can be obtained
by the Eq. (1). Symbol T of Eq. (2) indicates the transpose matrix.

Fig. 1. Graphical synthesis procedure of an Oldham mechanism with inclined slots.
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Consequently, the position vector rEj of any point E of the rigid body at the j-pose
can be determined through the matrix equation:

r E j = D i j rE i (3)

Where rEi is the position vector of E at the starting position Ei. Of course, the same can
be done for the point B, when rBi is assigned.

Moreover, the same finite displacement of the rigid body from the i- to the j-pose
can be also performed through a pure rotation of the angle ϑ i j about the rotation pole
Pij, which position vector rij can be expressed in homogeneous coordinates as

r i j = [
x i j yi j 1

]T
(4)

where the Cartesian components xij and yij are given by

xij = xi + xj
2

+ (
yi − yj

) sin ϑij

2
(
1 − cosϑij

) , y ij = yi + yj
2

+ (
xj − xi

) sin ϑij

2
(
1 − cosϑij

) (5)

Thus, a suitable formulation to determine the pole triangle that ismade by the rotation
poles P12, P23 and P13, its circumcircle, along with the three mirror images of it with
respect to each edge of the pole triangle, which also intersect each other at the cardinal
pointHC (orthocenter), is developed. In particular, each side of the pole triangle and the
position of HC are obtained by applying the analytical geometry.

The circumcircle Cp of the pole triangle can be formulated by imposing at the circle
to pass through the rotation poles P12 = (x12, y12), P23 = (x23, y23) and P13 = (x13, y13),
which gives the following linear system of three equations in three unknowns:

CX = G (6)

where C and G are given by

C =
⎡
⎣
x12 y12 1
x23 y23 1
x13 y13 1

⎤
⎦ G =

⎡
⎣

−(
x212 + y212

)
−(

x223 + y223
)

−(
x213 + y213

)

⎤
⎦ (7)

while the column vector X takes the form

X = [
a b c

]T
(8)

where a, b and c are the coefficient of the following algebraic equation of Cp:

y2 + x2 + ax + by + c = 0 (9)
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Thus, the linear algebraic system of Eq. (6) can be solved by applying the Cramer
method, as follows:

a = 1

detC
det

⎡
⎣

−(
x212 + y212

)
y12 1

−(
x223 + y223

)
y23 1

−(
x213 + y213

)
y13 1

⎤
⎦ b = 1

detC
det

⎡
⎣
x12 −(

x212 + y212
)
1

x23 −(
x223 + y223

)
1

x13 −(
x213 + y213

)
1

⎤
⎦ (10)

c = 1

det C

⎡
⎣
x12 y12 −(x212 + y212)
x23 y23 −(x223 + y223)
x13 y13 −(x213 + y213)

⎤
⎦ (11)

Similarly, still referring to Fig. 1, the equations of the three mirror circles Γ 1, Γ 2
and Γ 3, which pass through the orthocenter HC of the pole triangle, are determined in
the same way by applying the analytical geometry.

Thus, the kinematic synthesis of Oldham mechanisms is carried out by choosing the
two arbitrary points S and S1 on the circumcircle Cp, which represent the corresponding
fixed revolute joints of the two pistons, in order to guide with a one d.o.f., the coupler
rigid body by means of the slots of the two prismatic pairs.

Referring to Figs. 1 and 2, the three successive poses I, II and III of the coupler rigid
body, which correspond to the three assigned finitely separated positions A1–B1, A2–
B2 and A3–B3, are achieved by tracing the three lines passing through HC and that are
normal to each side of the pole triangle, by giving the pointsH1,H2 andH3, respectively,
as intersections of these straight lines with the circumcircle Cp.

Consequently, referring to Fig. 2a, the axes of the two straight slots pass through the
points S and H1, and S1 and H1, for the starting pose I and likewise, through S–H2 and
S1–H2 for the pose II, and finally, through S–H3 and S1–H3 for the pose III.

Of course, even this graphical synthesis procedure has been formulated in the form of
algorithm by applying the analytical geometry with the aim to obtain a whole synthesis
algorithm of Oldham mechanisms for three-finitely separated positions.

Moreover, the coupler curves of both points S and S1 that are considered as belonging
to the coupler rigid body with two slots, are determined in vector and matrix form. In
particular, taking into account that this rigid body motion can be considered as the
inverse motion of the Cardan mechanism, the centrodes are represented by the same
Cardan circles, where the internal circle is fixed and having a diameter that is equal to
the radius of the external moving circle, by giving a typical epitrochoid motion.

Referring to Fig. 2b, the position vector c of the center C of Cp is expressed as

c = [−a/2 −b/2 1
]T

(12)

while the position vector h∗
1 of point H

∗
1 can be obtained by the vector-loop equation:

h∗
1= c + r (13)

where the position vector r is given by

r = [
rcos(2θ + α) rsin(2θ + α) 1

] T
(14)
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Thus, substituting Eqs. (12) and (14) into Eq. (13), one has

h∗
1 = [−a/2 + rcos(2θ + α) −b/2 + rsin(2θ + α) 1

] T
(15)

where θ is the counterclockwise angle shown in Fig. 2.
The position vectors s∗ and s∗1 of points S* and S∗

1 are obtained by the following
loop-closure equations:

s∗ = c + r + hS (16)

s∗1= c + r + hS1 (17)

where the position vectors hS and hS1 of points S* and S1* with respect toH1* are given
by

hS = [−hScos(θ − ϕ1) −hSsin(θ − ϕ1) 1
] T

(18)

hS1 = [−hS1cos(θ − ϕ2) −hS1sin(θ − ϕ2) 1
] T

(19)

Fig. 2. Scheme of the Oldham mechanism with inclined slots: a) epitrochoid coupler curves of
points S and S1 with cusps b) position vectors and corresponding vector loops.

Therefore, the coupler curves of both points S and S1 are obtained by substituting
the Eqs. (12), (14), (18) and (19) into Eqs. (16) and (17), respectively, as follows

s∗ =
⎡
⎣

−a/2 + rcos(2θ + α) − hScos(θ − ϕ1)

−b/2 + rsin(2θ + α) − hSsin(θ − ϕ1)

1

⎤
⎦ (20)
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s∗1 =
⎡
⎣

−a/2 + r cos(2θ + α) − hs1 cos(θ − ϕ2)

−b/2 + r sin(2θ + α) − hs1 cos(θ − ϕ2)

1

⎤
⎦ (21)

where the angles α, ϕ1, ϕ2 are shown in Fig. 2b as depending by points H1, S and S1.
A suitable comparisonwith the corresponding infinitesimalmotion is now developed

by first determining the coordinates of the instant center of rotation P0 by means of the
analytical geometry and thus, as intersecting point of the following straight lines, in
agreement with the Chasles theorem:

y − y S= − (1/m1)(x − x S) y − y S1= − (1/m2)(x − x S1) (22)

where the angular coefficients m1 and m2, are given by

m1 = (y S − y H1)/(x S − x H1) m2 = (y S1 − y H1)/(x S1 − x H1) (23)

Consequently, the position vector rP0 of P0 takes the form

rP0 =
[

(m1x S1−m2x S )−m1m2(y S−y S1)
m1−m2

x S−x S1+m1y S−m2y S1
m1−m2

1
]T

(24)

Thus, the return circleR for the pose I coincides with Cp and the cross center H1 of
the slots moves along Cp as opposite point of P0 and thus, representing the return pole.

3 Graphical and Numerical Results

The proposed general algorithm for the synthesis of Oldham mechanisms with inclined
and/or orthogonal slots for three-finitely separated positions has been implemented in
Matlab, in order to run significant examples for validation purposes. In particular, refer-
ring to Fig. 3, the first two examples of Figs. 3a and 3b show the pole triangle and its
circumcircle, along with the three mirror circles and the orthocenter, by starting with
the knowledge of the three poses A1B1, A2B2 and A3B3, while Figs. 3c and 3d refer
to the case of inclined slots and Figs. 3e and 3f refer to the case of orthogonal slots.
The corresponding input data are: A1 = (30, 120) mm, B1 = (60, 120) mm, A2 = (120,
130) mm, B2 = (135, 104.02) mm, A3 = (190, 110) mm, B3 = (184.8, 80.5) mm, θ12
= 60°; θ23 = −40°; θ13 = −100°; Case 1: S = (90, 48.9) mm, S1 = (120, 38.6) mm;
Case 2: S = (100, 49.2) mm, S1 = (91.7, −15.08) mm.
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Fig. 3. Synthesis of Oldham mechanisms: a) & b) pole triangle and circles; Case 1: c) inclined
slots; d) epitrochoid coupler curves; Case 2: e) orthogonal slots; f) epitrochoid coupler curves.
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4 Conclusions

The synthesis of Oldham mechanisms with inclined and/or orthogonal slots for three-
finitely separated positions has been developed by formulating a general algorithm,
which has been implemented inMatlab, in order to run significant examples and validate
the proposed synthesis procedure. In particular, the pole triangle and its circumcircle,
along with the corresponding mirror circles, are determined by including the epitrochoid
coupler curves of this inverse Cardan motion. Finally, a suitable comparison with the
corresponding infinitesimal motion has been carried out for the next developments to
design direct and/or inverse Cardan motion mechanisms.
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