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Abstract
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behavior of the predictors and mean squared error estimators. The new statistical 
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1 Introduction

Fay and Herriot (1979) introduced an area-level linear mixed model (LMM) that 
improves the accuracy of direct estimators by incorporating auxiliary information. 
In small area estimation (SAE), the advantage of using procedures based on area-
level models lies in the greater facility to incorporate explanatory variables of qual-
ity in the inferential process, with respect to other approaches based on individual 
models. See, e.g. Chapter 16 of Morales et al. (2021).

Direct estimators only use the data for the variable of interest in the estimation 
domain. In those domains with small sample sizes, the direct estimators will have 
large variances and therefore will not be very precise. An alternative estimation pro-
cedure consists of introducing auxiliary information by means of a statistical model. 
Area-level linear mixed models do this and can take into account hierarchical, spa-
tial or temporal correlation of the data.

The surveys or administrative records from previous time periods and the hierar-
chical structure of the data provide important sources of information that can be used 
to improve the efficiency of small area estimators. Some papers have generalized the 
Fay–Herriot model to borrow strength from time. They have considered correlated 
structures for sampling errors or random effects, time-varying random slopes, and 
state-space models. Without claiming to be exhaustive, we can cite the contributions 
of Pfeffermann and Burck (1990), Rao and Yu (1994), Ghosh et al. (1996), Datta 
et  al. (1999, 2002), You and Rao (2000), Singh et  al. (2005), González-Manteiga 
et al. (2010). Esteban et al. (2012), Marhuenda et al. (2013), Morales et al. (2015), 
Benavent and Morales (2021).

Another possible generalization of the Fay–Herriot model is to take advantage of 
the territorial and demographic structure of the population. Rao and Yu (1994) intro-
duced an area-level LMM with two levels of hierarchy. However, its basic model 
has not been extended to three levels in order to jointly model data from domains, 
subdomains, and time periods or subsubdomains. Torabi and Rao (2014) studied an 
extension of the Fay–Herriot area-level model to sub-area level, to obtain estimators 
for sub-areas nested within areas. Cai and Rao (2022) extended the transformation 
method of Cai et al. (2020) for variable selection to a three-fold linking model. They 
proposed two transformation-based methods for variable selection: one is parameter 
free and the other is parameter-dependent. However, they didn’t report EBLUP esti-
mation for the three-fold proposed model. While Krenzke et  al. (2020) developed 
an area-level univariate and bivariate Hierarchical Bayes linear three-fold model for 
proportions and averages.

The scarce research on hierarchical temporal models may be due to the fact that 
the usual periodicity of surveys in public statistics (quarterly or annual) does not 
allow cross-section data obtained with the same methodology over long periods of 
time. For these reasons, it is difficult to fit models with complex correlation struc-
tures to data, when the number of consecutive surveys available is not large enough. 
This paper covers in part this gap by introducing, for the first time in the statistical 
literature, a three-fold Fay–Herriot model, but having in mind a real data problem of 
poverty estimation and mapping.
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The new model is an area-level LMM with known error variances. This fact 
prevents, for example, the application of functions of the R packages lme4 or 
nlme for fitting LMMs. This is why we derive and implement a Fisher-scoring 
algorithm to estimate the model parameters by the residual maximum likeli-
hood (REML) method. Based on the model, the empirical best linear unbiased 
predictors (EBLUP) of linear indicators are derived and the corresponding mean 
squared errors (MSE) are approximated. Two MSE estimators are considered. 
The first one is based on the analytical MSE approximation and the second one is 
based on parametric bootstrap. In the first case, we follow (Prasad and Rao 1990) 
and (Datta and Lahiri 2000). In the second case, we follow (Hall and Maiti 2006) 
and (González-Manteiga et al. 2008).

Influence and diagnostics analysis are tools to validate a model and to get valu-
able information to interpret underlying data relationships. The aim is to investi-
gate if there are unfavorable cases by some established tolerance limits. Gener-
ally, exceeding those thresholds of attention may give an idea about the potential 
lack of fit of the model adopted. Some statistics in the literature are traditionally 
employed for detecting several aspects of these warnings, and then for assessing 
their theoretical and empirical implications. We follow (Demidenko and Stukel 
2005; Zewotir and Galpin 2007; Christensen et  al. 1992; Calvin and Sedransk 
1991) to introduce leverages, Cook’s distances, Covratio statistics, and residuals.

Nevertheless, when LMMs are applied to SAE problems, the influence and 
diagnostic tools should also take into account the impact of deleting a domain 
in the EBLUPs and in the estimators of the corresponding MSEs. As far as we 
know, this SAE-specific influence analysis has not been yet investigated. This 
paper introduces new tools to analyze the influence of domain deletion in the 
SAE results. Further, it also gives measures of model efficiency by taking into 
account the correlations between residuals and perturbations and the variability 
of the variance component estimators. The new diagnostic tools are applied to the 
three-fold Fay–Herriot model selected to analyze poverty data.

The eradication of poverty is a priority in 21st-century societies. This has 
led to the emergence of many studies to investigate statistical methodology that 
allows poverty to be mapped at different levels of territorial aggregation. Regard-
ing estimation techniques in small areas, we can cite some works. Molina and 
Rao (2010) proposed empirical best predictors (EBPs) based on a nested error 
regression model. Hobza and Morales (2016), Hobza et  al. (2018) fitted a logit 
mixed model to unit-level poverty data and derived EBPs for poverty propor-
tions. Tzavidis et al. (2008), Marchetti et al. (2012) introduced robust estimators 
of poverty indicators by using a quantile regression approach. Marchetti and Sec-
ondi (2017), Giusti et al. (2017), Tzavidis et al. (2015) gave interesting contribu-
tions to mapping poverty and health using Italian data while Tonutti et al. (2022) 
assessed anti-poverty policy at the Italian local level, and Guadarrama et  al. 
(2022) based their poverty predictions on temporal linear mixed models. In the 
case of area-level models, Esteban et al. (2012), Marhuenda et al. (2013), Morales 
et al. (2015). However, Boubeta et al. (2016, 2017), López-Vizcaíno et al. (2013, 
2015), Chandra et  al. (2017) employed generalized linear mixed models, with 
Poisson or multinomial distributions. The books edited by Pratesi (2016), Betti 
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and Lemmi (2013) give more contributions to the small area estimation of pov-
erty indicators.

This paper introduces new statistical methodology for poverty mapping and 
presents an application to data from the Spanish living condition survey (SLCS). 
This survey is designed to obtain reliable direct estimators in NUTS 2 type regions 
(autonomous communities), but the sample sizes are quite small in NUTS 3 type 
territories (provinces), according to the current NUTS classification of EURO-
STAT 2016. The aim of the study is to estimate the proportions of poverty by sex 
in the Spanish provinces during the years 2004–2008. For this reason, this paper 
introduces an area-level LMM with random effects in the province, in the province 
crossed with sex and in the crosses of province, sex and year. A three-fold Fay–Her-
riot model with time correlated AR(1) random effect is fitted for the application to 
SLCS data, but the results suggest to prefer a simpler model without complex tem-
poral correlation structure, since we only have data for 5 periods (years).

The paper is organized as follows. Section 2 introduces the new three-fold Fay–Her-
riot model, the fitting algorithm to calculate the REML estimators of the model parame-
ters, the specific influence and diagnostic tools, the EBLUPs of domain linear indicators 
and the analytic and bootstrap estimators of the corresponding MSEs. Section 3 presents 
some simulation experiments to investigate the performance of the fitting algorithm, the 
predictors, and the estimators of MSEs. In addition, the BLUPs and EBLUPs based on 
of the one-fold, two-fold and three-fold Fay–Herriot models are investigated. Section 4 
deals with the application to real data and the mapping of poverty proportions. Section 5 
gives some conclusions. The paper contains three appendixes. Appendix A derives the 
final expression of the analytic estimator of the MSEs. Appendix B defines the three-fold 
Fay–Herriot model, in case of AR(1) time effects, and presents the REML procedure for 
the estimation of the variance component parameters. Appendix C gives the list of Span-
ish provinces with the corresponding acronyms.

2  The three‑fold Fay–Herriot model

2.1  The model

Let us consider the three-fold Fay–Herriot model

where ydrt is a direct estimator of the characteristic of interest and xdrt is a row vec-
tor containing the aggregated population values of p auxiliary variables. The sub-
scripts d, r and t represent domains, subdomains, and subsubdomains respectively. 
For example, d, r and t may represent area (province), category (sex group), and 
time period (year) respectively. We assume that u1,d ∼ N(0, �2

1
) , u2,dr ∼ N(0, �2

2
) , 

u3,drt ∼ N(0, �2
3
) , edrt ∼ N(0, �2

drt
) , with 𝜎2

drt
> 0 known, d = 1,… ,D , 

r = 1,… ,R , t = 1,… , T  , are mutually independent. The variance of ydrt is 
var (ydrt) = �2

1
+ �2

2
+ �2

3
+ �2

drt
 , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  . Model (2.1) 

(2.1)
ydrt = xdrt� + u1,d + u2,dr + u3,drt + edrt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T ,
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generalizes the two-fold Fay–Herriot model described in Section  17.2 of Morales 
et al. (2021).

At the domain level d and subdomain level r, we define the matrices and 
vectors

where 1T denotes the T × 1 vector of ones, IT is the T × T  identity matrix and col and 
diag are the columns and diagonal matrix operators respectively.

We can write model (2.1) in the subdomain form

The variance matrix of ydr is

At the domain level d, we define the vectors and matrices

We can write model (2.1) in the domain form

Let us define the RT × (1 + R + RT) matrix Zd = (Z1,dZ2,d,Z3,d) and the (1 + R + RT) × 1 
vector ud = (u�

1,d
, u�

2,d
, u�

3,d
)� , with Vud = var (ud) = diag (�2

1
,V2,d ,V3,d) . We can write 

model (2.2) in the linear mixed model form

The variance matrix of yd is

At the population level, we define the vectors and matrices

Xdr = col
1≤t≤T

(xdrt), Z1,dr = Z2,dr = 1T , Z3,dr = IT , V3,dr = �2
3
IT , Ve,dr

= diag
1≤t≤T

(�2
drt
),

ydr = col
1≤t≤T

(ydrt), u3,dr = col
1≤t≤T

(u3,drt) ∼ NT (0,V3,dr), edr

= col
1≤t≤T

(edrt) ∼ NT (0,Ve,dr),

ydr = Xdr� + Z1,dru1,d + Z2,dru2,dr + Z3,dru3,dr + edr, d = 1,… ,D, r = 1,… ,R.

Vdr = var (ydr) = �2
1
1T1

�
T
+ �2

2
1T1

�
T
+ �2

3
IT + Ve,dr, d = 1,… ,D, r = 1,… ,R.

yd = col
1≤r≤R

(ydr), Xd = col
1≤r≤R

(Xdr), Z1,d = 1RT , Z2,d = diag
1≤r≤R

(Z2,dr), Z3,d = IRT ,

V2,d = �2
2
IR, V3,d = �2

3
IRT , Ve,d = diag

1≤r≤R
(Ve,dr), u2,d = col

1≤r≤R
(u2,dr) ∼ NR(0,V2,d),

u3,d = col
1≤r≤R

(u3,dr) ∼ NRT (0,V3,d), ed = col
1≤r≤R

(edr) ∼ NRT (0,Ve,d).

(2.2)yd = Xd� + Z1,du1,d + Z2,du2,d + Z3,du3,d + ed, d = 1,… ,D.

yd = Xd� + Zdud + ed, d = 1,… ,D.

Vd = var (yd) = �2
1
1RT1

�
RT

+ �2
2
diag
1≤r≤R

(1T1
�
T
) + �2

3
IRT + Ve,d, d = 1,… ,D.
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We can write model (2.1) in the population form

where the vectors u1 , u2 , u3 and e are mutually independent. The variance matrix of 
y is

Let us define the DRT × (D + DR + DRT) matrix Z = (Z
1
,Z

2
,Z

3
) and the (D + DR + DRT) × 1 

vector u = (u�
1
, u�

2
, u�

3
)� , with Vu = var (u) = diag (V1,V2,V3) . We can write model 

(2.3) in the linear mixed model form

If we assume that 𝜎2
1
> 0 , 𝜎2

2
> 0 , and 𝜎2

3
> 0 are known, then the best linear unbi-

ased estimator (BLUE) of � and the best linear unbiased predictor (BLUP) of u are

The empirical versions, EBLUE of � and EBLUP of u , are obtained by plugging 
estimators �̂�2

1
 , �̂�2

2
 and �̂�2

3
 in the place of �2

1
 , �2

2
 and �2

3
 , i.e.

y = col
1≤d≤D

(yd), X = col
1≤d≤D

(Xd), Z1 = diag
1≤d≤D

(Z1,d), Z2 = diag
1≤d≤D

(Z2,d), Z3 = IDRT ,

V1 = �2
1
ID, V2 = �2

2
IDR, V3 = �2

3
IDRT , Ve = diag

1≤d≤D
(Ve,d),

u1 = col
1≤d≤D

(u1,d) ∼ ND(0,V1), u2 = col
1≤d≤D

(u2,d) ∼ NDR(0,V2),

u3 = col
1≤d≤D

(u3,d) ∼ NDRT (0,V3), e = col
1≤d≤D

(ed) ∼ NRT (0,Ve).

(2.3)y = X� + Z1u1 + Z2u2 + Z3u3 + e,

V = var (y) = diag
1≤d≤D

(Vd) = �2
1
diag
1≤d≤D

(1RT1
�
RT
) + �2

2
diag
1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)

+ �2
3
IDRT + Ve.

y = X� + Zu + e,

(2.4)

�̃ =(X�
V

−1
X)−1X�

V
−1
y =

� D�
d=1

X
�
d
V

−1
d
Xd

�−1� D�
d=1

X
�
d
V

−1
d
yd

�
,

ũ =VuZ
�
V

−1(y − X�̃)

=

⎛⎜⎜⎝

𝜎2
1
ID 0 0

0 𝜎2
2
IDR 0

0 0 𝜎2
3
IDRT

⎞⎟⎟⎠

⎛⎜⎜⎜⎝

diag
1≤d≤D

(1�
RT
)

diag
1≤d≤D

( diag
1≤r≤R

(1�
T
))

IDRT

⎞⎟⎟⎟⎠
diag
1≤d≤D

(V−1
d
) col
1≤d≤D

(yd − Xd�̃)

=

⎛⎜⎜⎜⎜⎝

𝜎2
1
col

1≤d≤D

�
1
�
RT
V

−1
d
(yd − Xd�̃)

�

𝜎2
2
col

1≤d≤D

�
diag
1≤r≤R

(1�
T
)V−1

d
(yd − Xd�̃)

�

𝜎2
3
col

1≤d≤D

�
V

−1
d
(yd − Xd�̃)

�

⎞⎟⎟⎟⎟⎠
.

(2.5)�̂ = (X�V̂
−1
X)−1X�V̂

−1
y, û = V̂uZ

�V̂
−1(

y − X�̂
)
,
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where

We are interested in predicting the linear combination of fixed and random effects 
�
drt

= x
drt
� + u

1,d
+ u

2,dr
+ u

3,drt
 . If the vector of variance components � = (�2

1
, �2

2
, �2

3
) 

is known, the BLUP of �drt is �̃�drt = xdrt�̃ + ũ1,d + ũ2,dr + ũ3,drt . The corresponding 
EBLUP of �drt is obtained by substituting � by an estimator �̂ = (�̂�2

1
, �̂�2

2
, �̂�2

3
) , and it 

has the form

where �̂ and û are given in (2.5). The EBLUP of �drt is the predictor of the pop-

ulation mean Ydrt , i.e. ̂Y
eblup

drt
= �̂�drt . The synthetic estimator, �̂�syn

drt
= xdrt𝛽  , can be 

employed for out-of sample domains. The BLUP and EBLUP vectors are

Let us define Q = (X�V−1X)−1 , R = XQX�V−1 , I = IDRT and P = V
−1(I − R) = V

−1

−V−1
XQX

�
V

−1 , and note that ZVuZ
� = V − Ve . Then, X�̃ = Ry , y − X�̃ = (I − R)y 

and the BLUP of � can be written in the form

2.2  Estimation of variance component parameters

This Section gives a Fisher-scoring algorithm to calculate the REML estimators of 
�2
1
 , �2

2
 and �2

3
 . The REML log-likelihood is

Let us define � = (�1, �2, �3) = (�2
1
, �2

2
, �2

3
) . It holds that

V̂u = diag
1≤d≤D

(Vud) = diag (�̂�2
1
ID, �̂�

2
2
IDR, �̂�

2
3
IDRT ),

V̂ = diag
1≤d≤D

(Vd) = �̂�2
1
diag
1≤d≤D

(1RT1
�
RT
) + �̂�2

2
diag
1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
+ �̂�2

3
IDRT + Ve.

�̂�drt = xdrt�̂ + û1,d + û2,dr + û3,drt,

�̃dr = col
1≤t≤T

(�̃�drt), �̃d = col
1≤r≤R

(�̃dr), �̃ = col
1≤d≤D

(�̃d),

�̂dr = col
1≤t≤T

(�̂�drt), �̂d = col
1≤r≤R

(�̂dr), �̂ = col
1≤d≤D

(�̂d).

�̃ =X�̃ + Zũ = Ry + ZVuZ
�V−1(y − X�̃) = Ry + (V − Ve)V

−1(I − R)y

=Ry + (I − R)y − VeV
−1(I − R)y = y − VePy.

lreml(�
2
1
, �2

2
, �2

3
) = −

DRT − p

2
log 2� +

1

2
log |X�X| − 1

2
log |V|

−
1

2
log |X�V−1X| − 1

2
y�Py.

V1 =
�V

��1
= diag

1≤d≤D
(1RT1

�
RT
), V2 =

�V

��2
= diag

1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
, V3 =

�V

��3
= IDRT ,

Pa =
�P

��a
= −P

�V

��a
P = −PVaP, a = 1, 2, 3.
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By taking derivatives of lreml with respect to �a , we have the elements of the score 
vector S = S(�) = (S1, S2, S3)

� , i.e.

By taking second derivatives with respect to �a and �b , taking expectations and 
changing the sign, we obtain the components of the Fisher information matrix 
F = F(�) =

(
Fab

)
a,b=1,2,3

 , where

The updating formula of the Fisher-scoring algorithm is

As algorithm seeds, we may take �(0)
1

= �
(0)

2
= �

(0)

3
= S2∕3 , where S2 = 1

DRT−p
(y

−X�̌)�V−1
e
(y − X�̌) and �̌ = (X�V−1

e
X)−1X�V−1

e
y . The REML estimator of � is

where V̂ = V(�̂) was defined above. Under regularity assumptions, the asymptotic 
distributions of �̂ and �̂ are

Asymptotic confidence intervals, at the level 1 − � , for �a and �j are

where F−1(�̂) = (𝜈ab)a,b=1,2,3 , (X
�V−1(�̂)X)−1 = (qij)i,j=1,…,p and z� is the �-quantile of 

the standard normal distribution. If 𝛽j = 𝛽0 , then the p-value for testing H0 ∶ �j = 0 
is

2.3  Influence analysis and model diagnostics

Influence and diagnostics analysis are tools to validate a model, but also to get 
valuable information to interpret underlying data relationships. This section 
assumes that model parameters are estimated by the REML method. The aim is 
to investigate if there are unfavorable cases by some established tolerance limits. 

Sa =
�lreml
��a

= −
1

2
tr(PVa) +

1

2
y�PVaPy, a = 1, 2, 3.

Fab =
1

2
tr(PVaPVb), a, b = 1, 2, 3.

�(k+1) = �(k) + F−1(�(k))S(�(k)).

�̂ = (X�V̂
−1
X)−1X�V̂

−1
y,

�̂ ∼ N3(�,F
−1(�)), �̂ ∼ Np(�, (X

�V−1X)−1).

�̂�a ± z𝛼∕2 𝜈
1∕2
aa

, a = 1, 2, 3, 𝛽j ± z𝛼∕2 q
1∕2

jj
, j = 1,… , p,

p = 2PH0
(𝛽j > �𝛽0�) = 2P(N(0, 1) > �𝛽0�∕√qjj ).
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Generally, exceeding those thresholds of attention may give an idea about the 
potential lack of fit of the model adopted. Some statistics in the literature are 
traditionally employed for detecting several aspects of these warnings, and then 
for assessing their theoretical and empirical implications. We focused on some 
diagnostic measures, like the leverage points, the impact of domain deletion on 
fixed effects, the Cook’s distances, and the residual analysis. We present some 
additional valuations, given by some peculiarity of the area-level LMMs for SAE. 
In these types of models, like in the Fay–Herriot model or in the model (2.3), 
the variance of the regression error is given, instead of the case of the stand-
ard LMM. This fact has some interesting consequences, in terms of the measure 
of the general efficiency of the model. This section presents some influence and 
diagnostics tools adapted to the model (2.3). In particular, Sect. 2.3.4 introduces 
new influence statistics derived from the estimators of the MSEs of the EBLUPs, 
as the model efficiency and the mse-ratio.

2.3.1  Leverages

By following Demidenko and Stukel (2005), Zewotir and Galpin (2007), the leverage 
matrix of domain d is

where Lf ,d and Lr,d correspond to fixed and random part of the model. They are

We define the fixed-effects and random-effects leverages of domain d by averaging 
the diagonal elements of the corresponding leverage matrix, i.e.

where tr (A) indicates the trace of the square matrix A . As 
tr
�∑D

d=1
Lf ,d

�
= rank (Xd) , a domain d0 is first-level or second-level influential in 

the model fit if its fixed-effects or random-effects leverages fulfill

see (Demidenko and Stukel 2005). In particular, if the row-vectors x�
drt

∼ N(�
x
,�

x
) of 

the matrix Xd follow a multinormal distribution, so that x�
d
= (1,

1

RT
ΣR

r=1
ΣT

t=1
x
1,drt

, ...,

1

RT
ΣR
r=1

ΣT
t=1

xp,drt) , with x�
d
∼ N(�x,�x) , then ( Belsley et al. (1980)):

Ld = Ld(�̂) =
𝜕�̂d

𝜕yd
=

𝜕Xd�̂

𝜕yd
+

𝜕ûd
𝜕yd

≜ Lf ,d + Lr,d,

Lf ,d = Xd(X
�V−1X)−1X�

d
V−1

d
, Lr,d = ZdVudZ

�
d
V−1

d
(I − Lf ,d).

(2.6)Lf ,d =
1

RT
tr (Lf ,d), Lr,d =

1

RT
tr (Lr,d),

tr (Lf ,d0
) >

2

D

D∑
d=1

tr (Lf ,d), or tr (Lr,d0
) >

2

D

D∑
d=1

tr (Lr,d),
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With D > 50 , and p > 10 , the 95% value of the F distribution is less than 2 (Bol-
len and Jackman 1990). It is easy to see that equation  2.7 gives 1 when Lf ,d = 
1

D
ΣD
d=1

tr(Lf ,d) =
p

D
 . Then the cut-off value for the leverage of fixed effects seems 

fairly defined by twice the average 1
D
ΣD
d=1

Lf ,d = 1
D
ΣD
d=1

1

RT
tr(Lf ,d) =

p

D
 , as happens for 

the linear regression model.
Those domains with leverages greater than the cut-off points reveal a potentially sig-

nificant influence of the direct estimator on the value of the EBLUP vector �̂d.

2.3.2  Domain deletion

Domain deletion diagnostics allow knowing relevant shifts in the estimators of 
regression parameters. Let �̂(d) be the estimator of � calculated without using the 
data from domain d and let rm

d
= yd − Xd�̂ the vector of marginal residuals of 

domain d. It holds that

The Cook’s distance,

studies the influence of the domain d, based jointly on marginal residuals and lever-
ages, traditionally with a critical value 4/D.

In the linear regression with a sample of n observations, i = 1, ..., n , there are some 
accepted critical values for the Cook’s distance Δi , when the observation i is deleted. 
One of this is Δi > 1 , that corresponds to “distances”between �̂ and �̂(i) that lie beyond a 
50% confidence region, considered as too large. The most used cutoff values are Δi >

4

n
 , 

or Δi >
4

n−p
 . These values are derived starting from the alternative formula Δi =

t2
i

p

Li

1−Li

 , 
with Li the diagonal element of the leverage matrix, and ti the i-th studentized residual. 
Substituting the Li with the mean leverage Li =

p

n
 , the last critical value gives 

Δi =
t2
i

p+1

Li

1−Li

=
t2
i

p

p

n−p
=

4

n−p
 , when the regression studentized residuals exceed the usual 

critical value ti = 2 . Using the formulation of Banerjee and Frees (1997) of the confi-
dence ellipsoid at ( 1 − �)100% for the �̂’s, i.e. (� − �̂)�(X�

V
−1
X)−1(� − �̂) ≤ pF

1−� , for a 
linear mixed effects model we get the following critical region for Δd:

(2.7)
(D − p)(Lf ,d −

1

D
)

(p − 1)(1 − Lf ,d)
∼ Fp,D−p.

(2.8)�̂ − �̂ (d) = (X�V−1X)−1X�
d
V−1

d
(I − Lf ,d)

−1rm
d
.

(2.9)Δd =
1

rank (X)
(rm

d
)�(I − Lf ,d)

−1V−1
d
Xd(X

�V−1X)−1X�
d
V−1

d
(I − Lf ,d)

−1rm
d
,
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This critical value corresponds to the similar formula of the threshold defined in 
Cook (1977) for the linear regression model.

Christensen et al. (1992) introduced the Covratio statistics

where �̂ and �̂(d) are the REML estimators of � calculated with and without the data 
of domain d and F is the REML Fisher information matrix. A value of 𝛾(�̂(d)) close 
to zero indicates that the influence of domain d on the estimation of the variance 
parameters � is negligible. We are thus interested in detecting domains d with large 
departures of 𝛾(�̂(d)) from zero.

With regards to SAE, it is interesting to evaluate the effect of domain deletion in 
the MSE of the EBLUP. For this sake, we calculate the MSE estimators with and 
without domain d and we evaluate and compare the following two different averages 
of MSE estimators

2.3.3  Residuals

We use the approach of Calvin and Sedransk (1991) to analyze the model residuals. 
The three-fold Fay–Herriot model is a block-diagonal LMM with correlated obser-
vations, by their nested hierarchical structure. The method employs the analysis of 
the model-scaled residuals, after using the Cholesky root of the covariance matrix 
of the vector of target variables. Then, the new model has a uniform dispersion 
matrix. Given the block-diagonal covariance matrix V̂ = V(�̂) and the correspondent 
Cholesky root V̂ = Ĉ

�
Ĉ , the transformed model is

where X = Ĉ
�−1X , �ch = Ĉ

�−1� , � = Ĉ
�−1(Zu + e) . The residuals of model (2.12) 

are

and the externally studentized residuals r̃m
ch,drt

 are

Δd =
1

rank(X)
(rm

d
)�(I − Lf ,d)

−1V−1
d
Xd(X

�V−1X)−1X�
d
V−1

d
(I − Lf ,d)

−1rm
d
> F1−𝛼 .

(2.10)𝛾(�̂(d)) =

||||||
det[F(�̂(d))]

det[F(�̂)]
− 1

||||||
.

(2.11)

mse(�̂) =
1

DRT

D∑
�=1

R∑
r=1

T∑
t=1

mse
(
�̂��rt(�̂)

)
,

mse(�̂(d)) =
1

(D − 1)RT

D∑
�=1,�≠d

R∑
r=1

T∑
t=1

mse
(
�̂��rt(�̂(d))

)
.

(2.12)ych = Ĉ
�−1y = X�ch + �.

rm
ch,drt

= Ĉ
�−1rm

drt
= Ĉ

�−1(ydrt − x�
drt
�̂),
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where vdrt is the diagonal element of the matrix �̂�2
�(drt)

(
I − X(X

�
X)−1X

�)
 , and �̂�2

�(drt)
 is 

the estimated variance of the regression model (2.12), treated as a fixed effect linear 
model, with the data (ydrt, xdrt) omitted. Furthermore, the asymptotic distribution of 
r̃m
ch,drt

 is Student’s t with DRT − p − 1 degrees of freedom.

2.3.4  MSEs and correlations

The efficiency of the EBLUP in the small area estimation is usually evaluated by com-
paring the average MSE’s of the different models under investigation, given some 
application data. When theoretical studies or simulations are available, it is possible 
to compare the effectiveness of a model with respect to the population parameters 
given by a data generating process. Nevertheless, due to the circumstance that employ-
ing the BLUP approach is justified by the presence of large sampling variances in the 
small areas, one may study the behavior of the EBLUP in terms of the reduction of the 
estimated variability of the direct estimator, towards the prediction of the MSE of the 
EBLUP. Then, a normalized measure of the overall reduction of the sampling variances 
by the MSE’s may be quite useful, when assessing the efficiency of the linear predictor 
of a small area estimation model.

Let us consider the conditional residuals rc = y − �̃ , so that

Appendix A calculates the MSE of the BLUP �̃ and obtains the formula (A.1), i.e. 
MSE(�̃) = Ve − VePVe . Therefore, it holds that

For ease of exposition, we write i = 1,… ,DRT  , instead of d = 1,… ,D , 
r = 1,… ,R , t = 1,… , T  . For i, j = 1,… ,DRT  , let cij be the elements of matrix 
C = cov (rc, e) . By using the alternative formula MSE(�̃�drt) = g1,drt(�) + g2,drt(�) , 
with g1,drt(�) and g2,drt(�) given in (2.16), we have cii = �2

i
− g1,i(�) − g2,i(�) and

(2.13)r̃m
ch,drt

=
rm
ch,drt√
vdrt

=
Ĉ
�−1(ydrt − x�

drt
�̂)

√
vdrt

,

�̃ = y − VePy, rc = y − �̃ = VePy, var (rc) = var (y − �̃) = VePVPVe = VePVe.

cov (rc, e) = cov (VePy, e) = VeP cov (y, e) = VePVe = Ve −MSE(�̃) = var (rc),

var (rc − e) = var (rc) + var (e) − cov (rc, e) − cov (e, rc) = Ve − VePVe = MSE(�̃).

corr (rc
i
, ej) =

cov (rc
i
, ej)�

var (rc
i
) var (ej)

=
cij�
cii�

2
j

,

corr (rc
i
, ei) =

cov (rc
i
, ei)√

var (rc
i
) var (ei)

=
cii�
cii�

2
i

=

�
cii

�2
i

.
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Moreover, rc = VePy ∼ N(0,VePVe) , and |||corr(rci , ei)
||| ≤ 1 implies 0 ≤ cii ≤ �2

i
 , 

with cii the i-th diagonal element of the matrix VePVe . If corr(rci , ei) approaches 1, 
this suggests that the correspondent conditional residual rc

i
 can be considered a wor-

thy replacement of the sampling error ei . Given 0 ≤
cii

�2
i

≤ 1 , it is clear that cii
�2
i

⟶ 0 

means that cii ⟶ 0 , and cii
�2
i

⟶ 1 when cii ⟶ �2
i
 . Defining c∗

ii
 as the i -th diagonal 

element of the matrix P , thus cii = �4
i
c∗
ii
 , and corr(rc

i
, ei) =

�
cii

�2
i

= �i
√
c∗
ii
 . Further, 

cii ⟶ 0 when c∗
ii
⟶ 0 , and cii ⟶ �2

i
 when c∗

ii
⟶ �−2

i
 . The range of c∗

ii
 is then 

0 ≤ c∗
ii
≤ �−2

i
 . The residuals rc

i
 can be written as rc

i
= �2

i
(c∗

ii
yi + ΣN

j≠i
c∗
ij
yj) , if 

N = DRT  . Following Zewotir and Galpin (2007) in the framework of mixed models, 
here we observe that if c∗

ii
⟶ 0 or �2

i
c∗
ii
⟶ 1 (i.e. c∗

ii
⟶ �−2

i
 ), then also c∗

ij
⟶ 0 , 

for i ≠ j . This means that small areas with small c∗
ij
 give small residuals, and then 

they represent high leverage values. When c∗
ii
⟶ 0 the correspondent small areas 

make little contributions to � , and the predicted MSE tends to equal the estimated 
sampling variance. Conversely, with c∗

ii
⟶ �−2

i
 , we have corr(rc

i
, ei) ⟶ 1 , and the 

conditional residuals as rc
i
= yi + �2

i
ΣN
i≠j
c∗
ij
yj ⟶ yi . This condition gives the major 

possiblecontribution of the i-th small area to the value of the index � , and the best 
performance of the model in terms of the reduction of the expected MSE of the 
EBLUP.

A measure of the model efficiency, say � , is then based on tr
(
corr (rc, e)

)
 , i.e.

where the last sum in i can be calculated by adding the diagonal elements of the 
square matrix

Taking the MSE estimator mse(�̂�i) = mse(�̃�i) + 2g3,i(�̂) from Sect.  2.4, we define 
the mse-ratio

(2.14)

� =
1

DRT

DRT∑
i=1

[ corr (rc, e)]ii =
1

DRT

DRT∑
i=1

√
cii

�2
i

=
1

DRT

DRT∑
i=1

�i, −1 ≤ � ≤ 1,

V
−

1

2

r cov (rc, e)V
−

1

2

e , Vr = diag
(
var (rc

1
), ..., var (rc

DRT
)
)
.

(2.15)𝜋i =
mse(�̂�i)

mse(�̃�i)
− 1 =

2g3,i(�̂)

mse(�̃�i)
, i = 1,… ,DRT .



 L. Marcis et al.

1 3

A dispersion graph plotting (�i, �i) indicates jointly the efficiency of the model and 
the contribution of the variability of the variance component estimators to the esti-
mation of the MSEs of the EBLUPs �̂�i , i = 1,… ,DRT .

2.4  Estimation of mean squared errors

This Section considers the problem of estimating the MSE of the EBLUP of 
�̂�drt = xdrt�̂ + û1,d + û2,dr + û3,drt of �drt = xdrt� + u1,d + u2,dr + u3,drt , d = 1,… ,D , 
r = 1,… ,R , t = 1,… , T , where �̂ and û are given in (2.5). In matrix form, we have 
�drt = a�(X� + Zu) , where a = adrt = col

1≤�≤D
( col
1≤s≤R

( col
1≤h≤T

(�d��rs�th))) is a vector hav-
ing a one in the cell t + (r − 1)T + (d − 1)RT and having zeros in the remaining cells. 
The symbol �d� denotes the Kronecker’s delta, i.e. �d� = 1 if d = � and �d� = 0 other-
wise. We give an analytic and a bootstrap MSE estimator.

2.4.1  Analytic estimator

For approximating the MSE of �̂�drt , we follow Section 17.2.3 of Morales et al. (2021). 
We obtain the formulas

where T = Vu − VuZ
�V−1ZVu and b� = a�ZVuZ

�V−1 . An analytic estimator of the 
MSE of �̂�drt is

where �̂ is the REML estimator. Appendix A gives the calculations of g1drt , g2drt and 
g3drt . Alternatively, we introduce a parametric bootstrap procedure for estimating the 
MSE(�̂�drt).

2.4.2  Parametric bootstrap estimator

The parametric bootstrap procedure for estimating the MSE of �̂�drt has the following 
steps. 

1. Calculate the REML estimators �̂ = (�̂�2
1
, �̂�2

2
, �̂�2

3
) and �̂.

2. Repeat B times ( b = 1,… ,B):

(2.16)

MSE(�̂�drt) =g1drt(�) + g2drt(�) + g3drt(�),

g1drt(�) =a
�
(
Ve − VeV

−1Ve

)
a = a�ZTZ�a,

g2drt(�) =a
�VeV

−1XQX�Vea =
(
a�X − a�ZTZ�V−1

e
X
)
Q
(
X�a − X�V−1

e
ZTZ�a

)
,

g3drt(�) ≈ tr
{
(∇b�)V(∇b�)�E

[
(�̂ − �)(�̂ − �)�

]}
,

mse(�̂�drt) = g1drt(�̂) + g2drt(�̂) + 2g3drt(�̂),



1 3

Three‑fold Fay–Herriot model for small area estimation and…

(a) For d = 1,… ,D , generate u∗(b)
1,d

 i.i.d. N(0, �̂�2
1
) . Construct the vector 

u
∗(b)

1
= col

1≤d≤D
(u

∗(b)

1,d
).

(b) For d = 1,… ,D , r = 1,… ,R , generate u∗(b)
2,dr

 i.i.d. N(0, �̂�2
2
) . Construct the 

vector u∗(b)
2

= col
1≤d≤D

( col
1≤r≤R

(u
∗(b)

2,dr
)).

(c) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , generate u∗(b)
3,drt

 i.i.d. N(0, �̂�2
3
) . 

Construct the vector u∗(b)
3

= col
1≤d≤D

( col
1≤r≤R

( col
1≤t≤T

(u
∗(b)

3,drt
))).

(d) For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  generate independent variables 
e
∗(b)

drt
∼ N(0, �2

drt
) . Construct the vector e∗(b) = col

1≤d≤D
( col
1≤r≤R

( col
1≤t≤T

(e
∗(b)

drt
)).

(e) Calculate the bootstrap vector 

(f) Fit the assumed model to the bootstrap vector y∗(b) , calculate the estimators 
�̂
∗(b)

 , �̂∗(b) of the model parameters, the true value of the mixed parameter 
�∗(b) = X�̂ + Z1u

∗(b)

1
+ Z2u

∗(b)

2
+ Z3u

∗(b)

3
 and the EBLUP �̂∗(b) with compo-

nents �∗(b)

drt
 and �̂�∗(b)

drt
 , respectively.

3. Output: for d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate 

3  Simulations

Three simulation experiments are carried out under the three-fold Fay–Herriot 
model. The data generation process is inspired by the simulation experiments pre-
sented in Chapter  17 of Morales et  al. (2021) for the FH2 model. The simula-
tions investigate the behavior of the REML estimators of model parameters, the 
EBLUPs of domain means, and the bootstrap MSE estimators. The data genera-
tion process is

For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , the explanatory and dependent vari-
ables are

(2.17)y∗(b) = X�̂ + Z1u
∗(b)

1
+ Z2u

∗(b)

2
+ Z3u

∗(b)

3
+ e∗(b).

mse∗(�̂�drt) =
1

B

B∑
b=1

(
�̂�
∗(b)

drt
− 𝜇

∗(b)

drt

)2

.

xdrt =
1

5
(bdrt − adrt)Udrt + adrt, Udrt =

t

T + 1
, adrt = 1,

bdrt =1 +
1

DR

(
(d − 1)RT + (r − 1)T + t

)
,

ydrt =�1 + �2xdrt + u1,d + u2,dr + u3,drt + edrt, �1 = 1, �2 = 1,
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where u1,d ∼ N(0, �2
1
) with �2

1
= 0.1 , u2,dr ∼ N(0, �2

2
) with �2

2
= 0.1 , u3,drt ∼ N(0, �2

2
) 

with �2
3
= 0.1 , edrt ∼ N(0, �2

drt
) and

3.1  Simulations

Simulation 1 investigates the bias and the MSE of the REML estimators of the 
model parameters and of the EBLUPs. The simulation steps are 

1. Repeat I = 103 times ( i = 1,… , I)

 1.1. G e n e r a t e  a  s a m p l e  o f  s i z e  DRT  a n d  c a l c u l a t e 
�
(i)

drt
= �1 + �2xdrt + u

(i)

1,d
+ u

(i)

2,dr
+ u

(i)

3,drt
.

 1.2. Calculate the REML estimator 𝜏(i) ∈ {𝛽
(i)

1
, 𝛽

(i)

2
, �̂�

2(i)

1
, �̂�

2(i)

2
, �̂�

2(i)

3
} and the 

EBLUP �̂�(i)

drt
.

2. For � ∈ {�1, �2, �
2
1
, �2

2
, �2

3
} and �drt , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , cal-

culate 

�2
drt

=
2

25

(d − 1)RT + (r − 1)T + t − 1

DRT − 1
+ 0.8.

Table 1  Results of Simulation 1 
for T = R = 10

D 50 100 200 300

BIAS(𝛽
1
) 0.0029 0.0023 −0.0001 0.0001

BIAS(𝛽
2
) −0.0017 −0.0016 0.0000 −0.0003

BIAS(�̂�2

1
) −0.0005 0.0003 0.0001 −0.0004

BIAS(�̂�2

2
) −0.0007 0.0000 0.0001 0.0002

BIAS(�̂�2

3
) −0.0007 −0.0001 −0.0002 −0.0003

ABIAS 0.0091 0.0093 0.0092 0.0091
ARBIAS 0.3713 0.3799 0.3770 0.3744

RMSE(𝛽
1
) 0.0829 0.0581 0.0413 0.0349

RMSE(𝛽
2
) 0.0457 0.0311 0.0228 0.0188

RMSE(�̂�2

1
) 0.0241 0.0173 0.0122 0.0100

RMSE(�̂�2

2
) 0.0133 0.0089 0.0065 0.0054

RMSE(�̂�2

3
) 0.0200 0.0139 0.0097 0.0081

RMSE 0.3629 0.3624 0.3622 0.3621
RRMSE 14.8801 14.8594 14.8522 14.8496
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3. Calculate also the corresponding relative performance measures in %. The relative 
bias (RBIAS), the relative root-MSE (RRMSE), the average absolute relative bias 
(ARBIAS), and the average relative root-MSE (ARRMSE) are 

Table 1 presents the results of Simulation 1 for R = T = 10 . It shows that the bias 
is always close to zero and that the MSE decreases when the number of domains D 
increases, so the REML estimators seem to be consistent. From the last line, one 
can observe that the MSE of the EBLUP is almost constant with increasing D. This 
behavior is expected since as the number of small areas increases, the number of 

BIAS(𝜏) =
1

I

I∑
i=1

(𝜏(i) − 𝜏), RMSE(𝜏) =

(
1

I

I∑
i=1

(𝜏(i) − 𝜏)2
)1∕2

.

BIASdrt =
1

I

I∑
i=1

(�̂�
(i)

drt
− 𝜇

(i)

drt
), RMSEdrt =

(
1

I

I∑
i=1

(�̂�
(i)

drt
− 𝜇

(i)

drt
)2
)1∕2

,

ABIAS =
1

DRT

D∑
d=1

R∑
r=1

T∑
t=1

|BIASdrt|, RMSE =
1

DRT

D∑
d=1

R∑
r=1

T∑
t=1

RMSEdrt.

RBIASdrt =
100BIASdrt�
1

I

I∑
i=1

�
(i)

drt

� , RRMSEdrt =
100RMSEdrt�

1

I

I∑
i=1

�
(i)

drt

� ,

ARBIAS =
1

DRT

D�
d=1

R�
r=1

T�
t=1

�RBIASdrt�,

ARRMSE =
1

DRT

D�
d=1

R�
r=1

T�
t=1

RRMSEdrt.

Table 2  Bias (top) and RMSE 
(bottom) results of BLUPs �2

1
FH1 FH2 FH3 FH1 FH2 FH3

ABIAS ARBIAS
0.1 0.0138 0.0096 0.0090 0.5657 0.3940 0.3705
0.5 0.0307 0.0122 0.0091 1.2271 0.4935 0.3702
1.0 0.0427 0.0145 0.0091 1.6752 0.5917 0.3748
1.5 0.0713 0.0173 0.0091 2.7715 0.7029 0.3745
2.0 0.0596 0.0168 0.0091 2.3903 0.6934 0.3716

RMSE RRMSE
0.1 0.6034 0.3826 0.3622 24.4308 15.6863 14.8523
0.5 1.0147 0.4705 0.3628 40.7532 19.2399 14.8387
1.0 1.3494 0.5574 0.3629 54.2313 22.8448 14.8810
1.5 1.6195 0.6333 0.3628 64.9404 25.9187 14.8563
2.0 1.8385 0.7037 0.3630 73.8317 28.8117 14.8663
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terms that we have to predict also increases. So that the ratio of what we have to pre-
dict to sample size is constant.

3.2  Simulation 1a

Simulation 1a compares the BLUPs and EBLUPs based on of the one-fold, two-
fold and three-fold Fay–Herriot models. We generate the data in the same way as in 
Simulation 1. This is to say, the data generating model is the FH3 model

The one-fold Fay–Herriot model (FH1) is

If we define the new index i = (d, r, t) , then we can write

The two-fold Fay–Herriot model (FH2) is

If we define the new indexes i = (d, r) and j = t , then we can write

We take D = 50 , T = R = 10 , �1 = 1 , �2 = 1 , �2
2
= �2

3
= 0.1 and 

�2
1
= 0.1, 0.5, 1, 1.5, 2 . Tables 2 presents the simulation results of absolute (top left) 

ydrt = �1 + �2xdrt + u1,d + u2,dr + u3,drt

+ edrt d = 1,… ,D, r = 1,… ,R, t = 1,… , T .

ydrt = �1 + �2xdrt + u3,drt + edrt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T .

yi = �1 + �2xi + u3,i + ei, i = 1,… ,DRT .

ydrt = �1 + �2xdrt + u2,dr + u3,drt + edrt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T .

yij = �1 + �2xij + u2,i + u3,ij + eij, i = 1,… ,DR, j = 1,… , T .

Table 3  Bias (top) and RMSE 
(bottom) results of EBLUPs �2

1
FH1 FH2 FH3 FH1 FH2 FH3

ABIAS ARBIAS
0.1 0.0119 0.0094 0.0091 0.4865 0.3852 0.3713
0.5 0.0161 0.0100 0.0091 0.6560 0.4071 0.3712
1.0 0.0177 0.0099 0.0091 0.7216 0.4062 0.3748
1.5 0.0192 0.0101 0.0092 0.7841 0.4130 0.3755
2,0 0.0191 0.0101 0.0091 0.7842 0.4145 0.3723

RMSE RRMSE
0.1 0.4679 0.3751 0.3629 19.1881 15.3788 14.8801
0.5 0.6150 0.3928 0.3634 25.1508 16.0646 14.8641
1.0 0.6965 0.3984 0.3635 28.5497 16.3301 14.9064
1.5 0.7430 0.4007 0.3634 30.4123 16.4042 14.8817
2.0 0.7742 0.4019 0.3636 31.6981 16.4595 14.8925
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and relative (top right) Bias and root-MSE (bottom left) and relative root-MSE (bot-
tom right) for BLUPs. As �2

1
 increases both FH1 and FH2 increase in Bias and MSE, 

instead FH3 model always remains stable. Table 3 presents the simulation results of 
absolute (top left) and relative (top right) Bias and root-MSE (bottom left) and rela-
tive root-MSE (bottom right) for EBLUPs. Compared to the BLUPs the results for 
the EBLUPs are mitigated although the same trend remains for FH1, FH2 and FH3. 

3.3  Simulation 2

Simulation 2 studies the behavior of the estimators of the MSE of the EBLUP, intro-
duced in Sect.  2.4. Both the analytic and the parametric bootstrap estimators are 
investigated. More concretely, we investigate the behavior of the estimators mse(�̂�drt) 
and mse∗(�̂�drt) . To do this, such estimators are compared with the empirical MSE of 
�̂�drt obtained at the output of Simulation 1. The procedure is as follows. 

1. For D = 50, 100, 200, 300 , take the values of MSEdrt from the output of Simulation 1.
2. Repeat I = 200 times ( i = 1,… , I)

 2.1. Generate a sample (y(i)
drt
, xdrt) , d = 1,… ,D , r = 1,… ,R , t = 1,… , T .

 2.2. Calculate the estimators 𝛽(i)
1

 , 𝛽(i)
2

 , �̂�2(i)

1
 , �̂�2(i)

2
 , �̂�2(i)

3
.

 2.3. For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate mse0(i)
drt

= mse(�̂�
(i)

drt
) 

from (2.16).
 2.4. Repeat B times (b = 1,… ,B)

 2.4.1. Generate u∗(ib)
1,d

 , u∗(ib)
2,dr

 , u∗(ib)
3,drt

 , e∗(ib)
drt

 , d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , 
by using �̂�2(i)

1
 , �̂�2(i)

2
 , �̂�2(i)

3
 instead of �2

1
 , �2

2
 , �2

3
.

 2.4.2. Generate a bootstrap sample {y∗(ib)
drt

;d = 1,… ,D, r = 1,… ,R, t = 1,… , T} 
from the model 

 2.4.3. Calculate 𝜇∗(ib)

drt
= 𝛽

(i)

1
+ 𝛽

(i)

2
xdrt + u

∗(ib)

1,d
+ u

∗(ib)

2,dr
+ u

∗(ib)

3,drt
.

 2.4.4. Calculate the estimators of the parameters of the bootstrap model, 𝛽∗(ib)
1

 , 
𝛽
∗(ib)

2
 , �̂�2∗(ib)

1
 , �̂�2∗(ib)

2
 , �̂�2∗(ib)

3
.

 2.4.5. For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate the EBLUP 
�̂�
∗(ib)

drt
= 𝛽

∗(ib)

1
+ 𝛽

∗(ib)

2
xdrt + û

∗(ib)

1,d
+ û

∗(ib)

2,dr
+ û

∗(ib)

3,drt
.

2.5 For d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate 

y
∗(ib)

drt
= 𝛽

(i)

1
+ 𝛽

(i)

2
xdrt + u

∗(ib)

1,d
+ u

∗(ib)

2,dr
+ u

∗(ib)

3,drt
+ e

∗(ib)

drt
.
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3. Output: for d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate the performance 
measures. The bias (BIAS), the root mean squared error (RE), the average abso-
lute bias (AAB), the average root mean squared error (ARE), the relative bias 
(RB), the relative root mean squared error (RRE), the average absolute relative 
bias (AARB) and the average relative root mean squared error (ARRE) are 

4. Output: for d = 1,… ,D , r = 1,… ,R , t = 1,… , T  , calculate the relative perfor-
mance measures in % 

mse
1(i)

drt
=

1

B

B∑
b=1

(
�̂�
∗(ib)

drt
− 𝜇

∗(ib)

drt

)2

.

BIASa
drt

=
1

I

I∑
i=1

(
mse

a(i)

drt
−MSEdrt

)
, REa

drt
=

(
1

I

I∑
i=1

(
mse

a(i)

drt
−MSEdrt

)2
)1∕2

, a = 0, 1,

AABa =
1

DRT

D∑
d=1

R∑
r=1

T∑
t=1

|BIASa
drt
|, AREa =

1

DRT

D∑
d=1

R∑
r=1

T∑
t=1

REa
drt
, a = 0, 1,

B=100 B=200 B=300 B=400

−0
.5

0.
0

0.
5

Boxplot of RBdrt
1

B=100 B=200 B=300 B=400

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Boxplot of RREdrt
1

Fig. 1  Boxplots of RB1

drt
 (left) and RRE1

drt
 (right) with D = 50 and R = T = 10

Table 4  AABa , AARBa , AREa 
and ARREa , a = 0, 1 , with 
R = T = 10 and B = 300

D 50 100 200 300

AAB
0 0.0047 0.0047 0.0047 0.0047

AAB
1 0.0047 0.0048 0.0047 0.0047

AARB
0 0.1429 0.0715 0.0361 0.0238

AARB
1 0.1419 0.0725 0.0359 0.0236

ARE
0 0.0151 0.0124 0.0091 0.0078

ARE
1 0.0186 0.0164 0.0141 0.0134

ARRE
0 0.4590 0.1884 0.0692 0.0398

ARRE
1 0.5635 0.2497 0.1072 0.0679
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Figure 1 plots the boxplots with the DRT values of RB1
drt

 (left) and RRE1
drt

 (right), 
with D = 50 and R = T = 10 for B = 100, 200, 300, 400 . We observe that the para-
metric bootstrap method presents a small relative bias around zero and a relative 
root MSE which mean decreases from 0.73% to 0.54% as B increases. We recom-
mend applying this method with at least B = 300 replications, even if the calculation 
times can be heavy.

Table  4 presents the results of the performance measures of Simulation 2 
for R = T = 10 , B = 300 and several values of D. It shows that AABa and AREa , 
a = 0, 1 , tend to zero as D grows. The analytical estimator mse0

drt
 has a very good 

behavior. It is basically unbiased and its average quadratic error is smaller than that 
of the basic bootstrap estimator mse1

drt
.

4  The application

4.1  Model and poverty predictions

This Section presents an application to real data with the main goal to estimate the 
poverty incidence (proportion of individuals under poverty line) in Spanish domains 
under an area-level three-fold Fay–Herriot model. We use data from the SLCS cor-
responding to the years 2004–2008, with D = 52 domains (provinces), R = 2 sub-
domains (sexes) and T = 5 time periods (years). The target variable ydrt is de Hájeck 
direct estimator of the poverty proportion and the error variance �2

drt
 is the estimate 

of the design-based variance of the direct estimator, as described in Section 2.5 of 
Morales et al. (2021).

As usually done in SAE, the auxiliary variables are related to demographic char-
acteristics, socioeconomic status, education, and immigration status which are rele-
vant for government policymaking and program planning, also at smaller geographi-
cal levels. It is essential to take into account the interpretation of the relationship 

RBa
drt

=
100BIASa

drt�
1

I

∑I

i=1
MSEdrt

� , RREa
drt

=
100REa

drt�
1

I

∑I

i=1
MSEdrt

� , a = 0, 1,

AARBa =
1

DRT

D�
d=1

R�
r=1

T�
t=1

�RBa
drt
�, ARREa =

1

DRT

D�
d=1

R�
r=1

T�
t=1

RREa
drt
, a = 0, 1.

Table 5   �-parameters and 
p-values

constant cit2 lab2

� 0.2097 −0.2714 0.4423
p-value 0.0000 0.0001 0.0009
INF 0.1836 −0.4052 0.1800
SUP 0.2359 −0.1376 0.7046
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between auxiliary and dependent variables, and the fact that it could vary with the 
level of aggregation.

We take the auxiliary variables from the Spanish Labour Force Survey (SLFS). 
The SLFS is published quarterly, includes nearly 65,000 dwellings, equivalent to 
approximately 160,000 people. Each quarterly SLFS sample size is larger than the 
size of an annual SLCS sample. Further, to increase the precision of the estimates, 
we jointly use the data from the four trimesters of years 2004–2008 to calculate the 
auxiliary variables by using the formula of the Hájek direct estimator of a domain 
mean. The constructed auxiliary variables are the domain proportions of people in 
the categories of the following factors:

• citizenship: with 2 categories denoted by cit1 for Spanish and cit2 for Not Span-
ish.

• labor: labor situation with 4 categories taking the values lab0 for Below 16 
years, lab1 for Employed, lab2 for Unemployed and lab3 for Inactive.

Table 6  95% CIs for variances Parameter INF SUP 0 ∈CI

�2

1
0.0038 0.0089 F

�2

2
0.0001 0.0003 F

�2

3
0.0002 0.0005 F

�2

1
− �2

2
0.0036 0.0087 F

�2

1
− �2

3
0.0034 0.0085 F

�2

2
− �2

3

−0.0004 −0.0001 F

Direct vs Eblup estimates
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Fig. 2  Estimates of poverty proportions (left) and root-MSEs (right) by province, sex, and year
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In the strict sense, the explanatory variables have measurement errors independent 
of sampling errors. It would therefore be necessary to generalize to the FH3 model, 
the approaches of Ybarra and Lohr (2008), Burgard et al. (2020, 2022). This task 
exceeds the objectives of the current research. In this sense, this section presents an 
illustrative application of the statistical methodology introduced in Sect. 2.

Based on the preliminary exploratory analysis, the only significant covariates of 
the selected model were the ones included in Table 5. The model has two statisti-
cally significant variables that have a relevant meaning in the socio-economic sense. 
These variables are cit2 (not Spanish citizens) and lab2 (unemployed). Table 5 pre-
sents the regression parameters � and their corresponding p-values. By observing 

Direct vs Eblup estimates (Men − 2008)

Domains
0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

Direct
Eblup

Direct vs Eblup estimates (Woman − 2008)

Domains
0 10 20 30 40 50

0.
1

0.
2

0.
3

0.
4

0.
5 Direct

Eblup

Fig. 3  Direct and EBLUP poverty estimates for men (left) and women (right) in 2008

Root−MSE estimates (Men − 2008)
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Fig. 4  RMSEs of EBLUPS and direct estimators for men (left) and women (right) in 2008
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the signs of the regression parameters we interpret that there is an inverse relation-
ship between poverty proportion and the category cit2 of the explanatory variable. 
That is, poverty incidence tends to be smaller in those domains with a larger propor-
tion of population in the subset defined by citizenship not Spanish. On the other 
hand, poverty incidence tends to be larger in those domains with a larger proportion 
of population in the subset defined by lab2 , i.e. in the category of unemployed peo-
ple. All the p-values are lower than 0.05 for all the considered auxiliary variables.

Table  5 also gives the asymptotic confidence intervals (CIs) for the regression 
parameters at the 95% confidence level. The rows with labels INF and SUP contain 
the lower and upper limits respectively. By observing these confidence intervals, we 
conclude that all the regression parameters are significantly different from zero.

Table  6 presents the CIs for the variance parameters at the 95% confidence 
level. The columns with labels INF and SUP contain the lower and upper limits 
respectively. The column with label 0 ∈ CI contains T (true) if 0 belongs to the CI 
and F (false) otherwise. We observe that the CIs for all the variances do not con-
tain the origin 0 in any case, so the variances are significantly positive. Table 6 
also gives the CIs for the difference of variances �2

1
− �2

2
 , �2

1
− �2

3
 and �2

2
− �2

3
 . 

The three variances can be considered two by two as different at the 95% confi-
dence level is significantly greater than zero. Therefore, we can recommend this 
model for deriving predictors of poverty indicators.

Figure  2 plots the direct and EBLUP poverty proportion estimates for all 
domains (province × sex × year). Concerning root-MSEs, the figure shows that 

Fig. 5  Map of poverty proportion for men (top) and women (bottom), year 2008

Table 7  �-parameters and 
p-values of model with AR(1) 
correlated time effects

constant cit2 lab2

� 0.2075 −0.2803 0.5053
p-value 0.0000 0.0000 0.0002
INF 0.1814 −0.4170 0.2406
SUP 0.2337 −0.1434 0.7699
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the EBLUPs have lower MSEs than the direct estimators. Therefore it is worth-
while using model-based predictors instead of direct estimators.

Figure 3 plots the direct and EBLUP poverty proportion estimates for men (left) 
and women (right) in the year 2008. This figure shows that they follow a similar 
(parallel) pattern.

Figure 4 plots the RMSEs of the direct estimators and the EBLUPs of poverty 
proportions for men (left) and women (right) in the year 2008. This figure shows 
that the model-based predictors have lower root-MSEs than the direct estimators.

Figure  5 plots the Spanish provinces in 4 colored categories depending on the 
values of the EBLUPs (in % ) of the poverty proportions. We observe that the Span-
ish regions where the proportion of the population under the poverty line is smallest 
are those situated in the north and east, like Cataluña, Navarra and Basque country. 
On the other hand, the Spanish regions with higher poverty proportions are those 
situated in the center-south, like Andalucía and Extremadura. In an intermediate 
position, we can find regions that are in the center-north of Spain, like Castilla León, 
Cantabria or Asturias.

We also fitted the SLCS data to a simpler two-fold Fay–Herriot model as a com-
petitor. On the basis of the likelihood-ratio test (LRT), at 95% we rejected the null 
hypothesis that the simpler model is consistent with the data, and therefore we 
selected the three-fold Fay–Herriot model. The Akaike information criterion (AIC) 
is 1329.43 for the FH2 model versus 1331.673 for the FH3 model. We addition-
ally calculated the Schwarz’s Bayesian information criterion (SBC) which result 
1318.928 for the FH2 model versus 1315.92 for the FH3 model. From the results 
of the test LRT and the SBC measure we can consider the more complex three-fold 
Fay–Herriot model as the best model for the fitting. In order to check if used data 
from the SLCS can be modelled with a time correlated effect, we fitted them on a 
three-fold Fay–Herriot model with AR(1) time effects. Details on model definition, 
REML algorithm for variance components estimation and confidence intervals are 
given in Appendix B. Table 7 presents the regression parameters � and their cor-
responding p-values. It shows that estimated regression coefficients are quite similar 
to the ones obtained fitting the model with independent time effects as shown in 
Table 5. Table 8 report the 95% confidence intervals for the variance parameters of 
the random effects. The results show that fitting the three-fold Fay–Herriot model 
with correlated time effects leads to a lost in the significance for the variance of the 
second random effect u2 . Moreover, even if it is significant, the correlation param-
eter � is close to zero. Figure  6 shows the comparison between the raw residuals 
(ydrt − �̂�drt) of model with independent time effects and the raw residuals of model 

Table 8  95% CIs for variances 
and � of model with AR(1) 
correlated time effects

Parameter estimate INF SUP 0 ∈CI

�2

1
0.00624 0.00373 0.00875 F

�2

2
0.00007 −0.00005 0.00019 T

�2

3
0.00039 0.00026 0.00053 F

� 0.00094 0.00083 0.00107 F
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with AR(1) correlated time effects. The evidence from this figure is that there is no 
difference in the distribution of the residuals from the two models. So, for the parsi-
mony principle we prefer the simpler model with independent time effects over the 
more complex model with time correlation parameter �.

Finally, for being more confident about the selected model with independent time 
effects as a true generating model, we will give suitable diagnostics.
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Fig. 6  Comparing raw residuals of model with independent time effects and raw residuals of model with 
AR(1) correlated time effects
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4.2  Model diagnostics

The employment of small area estimation models suggests investigating how the 
model diagnostics can be addressed to analyze some special questions that may 
be of interest to survey practitioners, that are typical of this field of investigation. 
For instance, traditional mixed model diagnostics methods can be supplied by the 
measures of the efficiency of the small area estimation model applied, or indexes 
that highlight the influence of data on the estimation of the mean squared error of 
the Eblup. The evaluation of the data structure, concerning their impact on the esti-
mation of fixed and random-area effects, as well as on the covariance parameters 
estimates, are some of these diagnostic measures. For example, the evaluation of 
the influence of the data on the covariance parameters estimates may be relevant, in 
terms of the evaluation of the weight of the regression-synthetic estimation part of 
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Fig. 8  Residuals for men (left) and women (right) for the years 2008
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the model. In the sequel, we are interested in purely exploring the impact of obser-
vations on the fitting and the evaluation of the model, rather than remove perma-
nently particular domains from the estimation process.

Figure 7 (left) plots the raw residuals of the fitted three-fold Fay–Herriot model 
against the direct estimates ydrt . Figure 7 (right) shows the raw residuals sorted (in 
ascending order) by the variances of the direct estimator. It shows that the greater 
the variances of the direct estimators are, the higher the residuals of the model are.

Figure 8 plots the raw residuals for men (left) and women (right) at the year 2008. 
This figure shows that the model smooths the predictions. Positive men residuals 
indicates that the EBLUPs tend to be lower than the corresponding direct estimates. 
Analogously, negative women residuals indicates that the EBLUPs tend to be greater 
than the corresponding direct estimates.

Figure 9 (left) plots the fixed-effects and the random-effects average leverages 
points Lf ,d and Lr,d , defined in (2.6), of the domains (provinces), with the cor-
responding thresholds. Table 9 of Appendix C gives the acronyms of the Spanish 
provinces. After averaging by sub-domains, Almería (AL) is the most influential 
on fixed-effects because exceeds the second cut-off value 2 × rank (X)∕DRT  (see 
subsection  2.3.1). Barcelona (B) is on the border of the second-level threshold 
as leverage point for the random-effects. Nobre and Singer (2007) suggest evalu-
ating the product Γ = ZdGdZ

�
d
V−1

d
= Lr,d + ZdGdZ

�
d
V−1

d
Lf ,d , in order to measure 

leverages of the random effects. This means that, in the present application, a 
small average contribution in a specific domain, given the sampling variance of 
the direct estimator, can lead to relevant random-effects leverage values. Barce-
lona reports simultaneously low-level of sampling variances and moderate fixed-
effects leverages, which is enough to justify the result reported.

Figure  9 (right) shows the joint variation by the covariates in the model, by 
plotting �̂(d) − �̂ , defined in (2.8). The “non Spanish citizenship”slope parame-
ter estimate is close to −0.27 , and the variation due to omitting Provinces has a 
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moderate consequence on the fixed-effect estimation. The most explicit change 
is due to Burgos (BU) and Castellón (CS), which, when it is omitted, causes the 
major possible increase of the estimates of the fixed-effect parameter. The prov-
inces of Madrid (M), Santa Cruz de Tenerife (TF) and Almería (AL), when omit-
ted, cause the most important decrease of the corresponding fixed-effect estimate. 
This corresponds to improve the negative average impact on the model dependent 
variable, namely the poverty proportion direct estimate.

The variable “unemployed” (with an estimated slope parameter close to 0.44) has 
generally more impact on the estimates. Cáceres (CC) and Cádiz (CA) are the prov-
inces that decrease the parameter estimate. This deals with the lowest possible value 
of the fixed-effect when a domain is deleted. When these provinces are omitted, the 
estimate of the coefficient estimate of the “Unemployed” variable undergoes the 
greatest decrease. Santa Cruz de Tenerife causes the major increase in the estimated 
parameter. When this province is deleted from the data, the impact of the “Unem-
ployed” covariate on the dependent variable is very high.

L f,d

r~  ch
,d

rt
m

r~ ch,drt
m   vs  L f,d

0.00 0.01 0.02 0.03 0.04

−4
−2

0
2

4

AL.M.5

AV.F.3

CS.M.4

C.F.1

CU.F.1

H.M.2H.M.4

H.F.5

MA.M.5

TF.M.2

TF.F.2

TF.F.4
SG.F.1

SO.F.3

VA.F.1

VA.F.2

BA.M.4
CC.F.1

OU.M.2LU.M.2
OU.F.2

CE.F.1

TF.M.5
TF.F.1

Cook's Distances

Domains

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

0.00

0.05

0.10

0.15

0.20

0.25

0.30

AL

CC

CS

TF

Fig. 11  Fixed-effects leverages of the “reduced” model (2.12) and the residuals r̃m
ch,drt

 , together with their 
cut-off thresholds (left), and Cook’s distances (right), with province abbreviations

γ(θ̂d)

m
se
(θ̂ d

)

mse(θ̂d)  vs γ(θ̂d)

CR

AV

GR

MU

OU

CS

AB
TO
PO

ZA

S

H

SA

TE

GU

VI

AL

SG

P
VA

BA

BU

SO

J
HU

LU

ML

GC
GI

CC
CU

L

SS
T

NA

MA
IB

CO

C
Z
CA

CE

BI

LE
SE

B

LO

M

A

O

V

TF

0.
0

0.
1

0.
2

0.
3

0.
4

0.00030

0.00031

0.00032

0.00033

0.00034

0.00035

0.00036

0.00037

γ(θ̂d)

τ(θ̂
d)

τ(θ̂d)  vs γ(θ̂d)

CR

AV

GR

MU

OU
CSAB

TO

PO

ZA

S

HSATEGU
VI
AL

SGP

VABABU

SO

JHU
LUML

GCGI
CC

CU
L

SS

T

NA

MA

IB

CO

C

Z

CA

CE

BI

LE

SE

B

LO

M

A

O

V

TF

0.
0

0.
1

0.
2

0.
3

0.
4

−5

−4

−3

−2

−1

0

1

2

Fig. 12  𝛾(�̂(d)) and the mse(�̂(d)) (left), and values of the ratio 𝜏(�̂(d)) considering a cut-off value � = 0 
(right) with province abbreviations



 L. Marcis et al.

1 3

Figure 10 shows the studentized residuals (2.13) with the confidence limits at ±2 
(left) and a Normal Q-Q (quantile-quantile) plot of the studentized residuals (2.13) 
(right). Few labels are reported for some points to identify as outliers, which are coded 
as follows: the province abbreviation, letter ‘M’ for male or ‘F’ for female, the year 
from 2004 to 2008 for simplicity denoted from 1 to 5, separated with dots. From a 
graphical analysis of the figure we can conclude that the assumption of normality is 
reliable. The studentized residual quantiles present a linear trend in relation to the 
quantiles of the N(0, 1) distribution. Furthermore, with a confidence level of 95% all 
points belong to the confidence region, with only two points falling outside, which are 
referred to Tenerife (TF) province.

Figure 11 (left) plots jointly the fixed-effects leverages of the model (2.12) and the 
residuals r̃m

ch,drt
 , defined in (2.13), together with their cut-off thresholds. Again some 

labels are reported, which are coded as before: the province abbreviation, letter ‘M’ for 
male or ‘F’ for female, the year from 2004 to 2008 for simplicity denoted from 1 to 5, 
separated with dots. Leverage extreme points confirm that Almería (AL) as one of the 
most influential province, but the scaled residuals reveal that Málaga (MA), Coruña 
(C), and Valladolid (VA) (in some years), are quite very influential on the fixed effects 
estimates of the “reduced" model. In general, the residuals r̃m

ch,drt
 are averaged by the 

Cholesky decomposition, and then they can be masked by the correspondent smooth-
ing effect (Calvin and Sedransk, 1991). This fact may not highlight some observations 
in the residual analysis. In the present case, we have evidence of provinces of Málaga, 
Coruña, and Valladolid in the residual plot of the r̃m

ch,drt
’s. This means that in the pres-

ence of two different smoothing given by averaging the fixed-effects leverages by the 
sub-domains and by the model variance decomposition, the first is the prevailing one.

Figure 11 (right) plots the Cook’s distances defined in (2.9), and highlights that 
the most influential provinces due to extreme residual points are Santa Cruz de Ten-
erife (TF), Castellón (CS), and Cáceres (CC). Due to very high fixed-effects lever-
age value, the most influential is Almería (AL).

Figure 12 (left) shows values of 𝛾(�̂(d)) and the mse(�̂(d)) , introduced in (2.10) and 
(2.11) respectively, which points out that Barcelona (B), when pulled out of the data, 
causes the worst average loss in terms of efficiency of the model. Further, Santa 
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Cruz de Tenerife (TF) when deleted produces the best gain in model efficiency. This 
fact causes simultaneously the maximum departure from the set of the covariance 
parameters estimates.

For the cut-off value � = 0 , Fig. 12 (right) reports the values of the ratio

where mse(�̂) was given by (2.11). Plotting 𝛾(�̂(d)) defined in (2.10) and 𝜏(�̂(d)) indi-
cates if varying (by deletion) the estimates �̂ , the model increases (decreases) the 
efficiency of the estimation. There are some important cases that reports highly neg-
ative 𝜏(�̂(d))’s, and this demonstrates again that Barcelona has the major negative rel-
ative impact on the average of the domain estimates of the prediction mean squared 
error, when deleted. The relative impact is positive when Soria (SO) is omitted.

Figure  13 plots the efficiencies �i versus the mse-ratios �i , defined in (2.14) and 
(2.15) respectively. This figure shows to which provinces the model attributes more effi-
ciency �i in the estimation. In our case study, we got � = 0.741251 , the vertical bar in 
the figure. In particular, provinces with the lowest values of �i (here it is convenient to 
set drt = i ) are those with smallest sampling variances (i.e., �2

i
 , see the subsec-

tion 2.3.4), and then this situation gives more weight to the first component (i.e., g1,i(�̂) ) 
of the estimated MSE(�̃) , that is related to the variance of the direct estimator. The cor-
respondent low values of corr(rc

i
, ei) = �i are justified by the fact that 

MSE(�̃) = g1,i(�̂) + g2,i(�̂) , almost approaching the sampling variance �2
i
 . Conversely, 

the highest values of �i are provided by the provinces with ci = �4
i
c∗
ii
≃ �2

i
 , that implies 

c∗
ii
≃ �−2

i
 (see again the subsection 2.3.4). Indeed, we observe that when c∗

ii
⟶ �−2

i
 we 

get c∗
ij
⟶ 0 ( i ≠ j ), and, consequently, rc

i
= �2

i
(c∗

ii
y
i
+ ΣN

j≠i
c
∗
ij
y
i
) = y

i
+ �2

i
ΣN

i≠j
c
∗
ij
y
j
⟶ y

i
 . 

Finally, (yi − �̃i)∕yi = rc
i
∕yi ⟶ 1 , and corr(rc

i
, ei) ⟶ 1 . Ávila (AV), Cuenca (CU), 

Palencia (P), Segovia (SG), Soria (SO), and Zamora (ZA) are the most efficient in 
terms of �i and a low value of the third component 2g3 , i.e. in terms of the greatest rela-
tive difference between the sampling variance and the MSE, respect to the sampling 
variance itself (see the formula of �i in 2.14). Moreover, provinces of Guipuzcoa (SS) 
and Cantabria (S) have some of the most relevant values in terms of the third compo-
nent 2g3 of the MSE of the EBLUP (see � in 2.15) Guipúzcoa (SS) and Gerona (GI) 
have some of the relevant values in terms of the third component of the MSE of the 
EBLUP.

5  Conclusions

This paper introduces the new three-fold Fay–Herriot model, which accounts for 
three levels of hierarchy to jointly model data from domains, subdomains, and 
time periods or subsubdomains. For calculating the REML estimators of the model 
parameters, a Fisher-scoring algorithm is implemented. Under the new model, the 
EBLUPs of linear indicators are derived and the corresponding MSEs are approxi-
mated. Two MSE estimators are proposed. The first one is analytic and based on the 

𝜏(�̂(d)) =
mse(�̂) − mse(�̂(d))

mse(�̂)
,
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MSE approximation. The second one relies on parametric bootstrap. The simula-
tion experiments empirically investigate the REML estimators, the EBLUPs and the 
MSE estimators. A three-fold Fay–Herriot model with AR(1) time effects is also 
introduced in Appendix B, but it is not finally selected in the application to real data.

Several measures of diagnostics are also proposed, not only to assess the general 
efficiency of the model but also to get valuable information to interpret underlying data 
relationships. Domain deletion diagnostics and Cook’s distance - both based on mar-
ginal residuals and leverages-allow to evaluate the influence of each domain on the esti-
mates. The former through the shift in the estimators of regression parameters, the latter 
highlighting which area is the most influential in the analysis. Moreover, regarding the 
MSE of the EBLUPs, the average MSE estimators are computed iteratively removing 
one domain at a time, and then are combined in a ratio to assess the impact of each 
domain in the performance of the MSE estimates. The analysis of model residuals is 
achieved by employing the scaled residuals obtained through a Cholesky root of the 
covariance matrix of the original data, to appraise the connection of the selected covari-
ates with the response variable. An efficiency measure of the model is instead proposed 
on the basis of the difference between the sampling variances and the g1 and g2 com-
ponents of the mse and, finally, a mse-ratio is accomplished to fix the variability of the 
estimation of the variance components to the predicted MSE. The reported diagnostics 
are then combined together in nice graphical representations which give great support, 
especially in the interpretation of the results within the application to real data.

It is worth reflecting on some conclusions about the model diagnostics presented, 
and in particular, on the measures introduced. The model studied is an extension of the 
Fay–Herriot model, where are present areas in a three-fold matrix of random effects 
design. The model belongs to the class of LMMs with block-diagonal structure. We 
have two main features of this model, with relevant consequences in terms of evaluation 
of the results. The first is that the model has more than one observation unit per area, 
unlike the basic Fay–Herriot model. This is because of the presence of the variable of 
the gender, and also to repeated observations of the same area with respect to five-time 
instants. The second is that since we apply an area-level model to the data, the variance 
of the residual mixed model errors is given. Both these model characteristics are con-
sidered in the diagnostics and influence analysis reported. In particular, we analyze the 
model marginal residuals through their reduction to ordinary regression residuals, due 
to correlated observations. This procedure depicts the areas starting only from the fixed-
effects matrix, and can play a significant role in the assessment of the connection of the 
selected covariates with the response variable. This allows also to study the model (2.12) 
as a theme-based model, through its scaled residuals rm

ch
 , in addition to the considerations 

related to the model-based estimation. Anyway, in an effort to eliminate the instability 
induced by the sampling variances in the model estimation process, the linear relation at 
the basis of the study can be further assessed by the diagnostic properties of the model 
reduced by the Cholesky root. In particular, using the Cholesky decomposition for the 
residuals, make some information about the data (i.e. some influential provinces) visible 
that would otherwise remain masked.

A further and prominent aspect of small area estimation models is related to the best 
reduction of the MSE of the area level predictors. Following the usual linear mixed-
model Covratio diagnostics, we introduced the use of some new plots, in order to rate 
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possible favorable changes in the estimation of the model. This also with a joint evalua-
tion of the level of the departure of the covariance parameters from the complete model 
and the change in the MSE. Finally, because in the area-level models the residual error 
variance is not to be estimated, model conditional residuals can be used to illustrate the 
level of efficiency of the model. The model efficiency index is then given by the joint 
consideration of conditional residuals and model errors, obtained by averaging their 
correlations.

The new small area model is applied to the Spanish living condition survey data of 
the periods 2004–2008. The target is to estimate poverty incidence by province, by sex 
and by year. Since the data were available for 5 periods, complex temporal correlation 
structures are not considered. The statistical inferences on the presented model show 
good results, both in the significance level of the estimated parameters and in the mini-
mization of the MSEs of the EBLUP estimates. Then with a map is depicted the distri-
bution of the EBLUP estimates for the proportion of poverty between the Spanish prov-
inces. The model introduced retains its features in terms of assessment of the impact of 
the demographic and the economic predictors used on the poverty proportion. Being the 
observations of the Spanish Provinces, evaluated in domains of the sexes and repeated 
by time instants, the model offers the opportunity to read analytically the considerable 
differences that distinguish various territories of Spain. Finally, we remark that the simu-
lations and the application of the model to the real data have been carried out with the 
programming language R. The developed software is available on request.

A Appendix: MSE derivations

A.1 Basic calculations

The mean squared error matrix of �̃ , with diagonal elements MSE(�̂�
blup

drt
) , is

Let us define M = (X�V−1X)−1X�V−1 , so that MVP = 0 . As var (X(�̂ − �) + Z(ũ

−u)) = var (X�̂ + Z(ũ − u)) , we have

MSE(�̃) = var (X(�̂ − �) + Z(ũ − u))

= var (X�̂) + var (Z(ũ − u)) + cov (X�̂,Z(ũ − u)) + cov (Z(ũ − u),X�̂).
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If we write P = V−1(I − R) = V−1 − V−1X(X�V−1X)−1X�V−1 = V−1 − V−1XM , we 
get ZVuZ

�PZVuZ
� = ZVuZ

�V−1ZVuZ
� − ZVuZ

�V−1XMZVuZ
� , and:

Since ZVuZ
� = V − Ve , U = XM(V − Ve) , we observe that VM�X� = XMV , and 

VeM
�X� = VeV

−1XMV . Therefore, we have

where T = Vu − VuZ
�V−1ZVu . Finally, we have

A.2 Calculation of g
1drt(�)

It holds that g1drt(�) = a�ZTZ�a , where T = Vu − VuZ
�V−1ZVu . We have

where

g1(�) =ZVuZ
� − ZVuZ

�V−1ZVuZ
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g
1
(�) =(V − V

e
) − (V − V

e
)V−1(V − V

e
)

= (V − V
e
) − (I − V

e
V

−1)(V − V
e
) = V

e
− V

e
V

−1
V

e
= ZTZ

�

g
2
(�) =XMV + [(V − V

e
)V−1

XM − XM](V − V
e
) − VM

�
X
� + V

e
M

�
X
�

= − V
e
V

−1
XM(V − V

e
) + V

e
M

�
X
� = V

e
V

−1
XMV

e

=V
e
V

−1
X(X�

V
−1
X)−1X�

V
−1
V

e
=
(
X − ZTZ

�
V

−1
e
X
)
Q
(
X
� − X

�
V

−1
e
ZTZ

�
)
,

(A.1)
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Note that a = col
1≤�≤D

(�d�art) , where art = col
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A.4 Calculation of g
3drt(�)

It holds that
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+ 1RTT12d diag
1≤s≤R

(1�
T
) + 1RTT13d + diag

1≤s≤R
(1T )T21d1

�
RT

+diag
1≤s≤R

(1T )T22d diag
1≤s≤R

(1�
T
) + diag

1≤s≤R
(1T )T23d + T31d1

�
RT

+ T32d diag
1≤s≤R

(1�
T
) + T33d

�
V

−1
ed
Xd.

g3drt(�) ≈ tr
{
(∇b�)V(∇b�)�E

[
(�̂ − �)(�̂ − �)�

]}
,

b� = a�ZVuZ
�V−1

= a�
�
diag
1≤𝓁≤D

(1RT ), diag
1≤𝓁≤D

(diag
1≤s≤R

(1T )), IDRT

�

⎛⎜⎜⎝

�2
1
ID 0 0

0 �2
2
IDR 0

0 0 �2
3
IDRT

⎞⎟⎟⎠

⎛⎜⎜⎜⎝

diag
1≤𝓁≤D

(1�
RT
)

diag
1≤𝓁≤D

(diag
1≤s≤R

(1�
T
))

IDRT

⎞⎟⎟⎟⎠
⋅ diag
1≤𝓁≤D

(V−1
𝓁
)

= a� diag
1≤𝓁≤D

��
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

�
V−1

𝓁

�
.
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where V�1 =
�V�

��2
1

= 1RT1
�
RT

 , V�2 =
�V�

��2
2

= diag
1≤s≤R

(1T1
�
T
) , V�3 =

�V�

��2
3

= IRT . Let us 

define

The components of (∇b�)V(∇b�)� take the form

They are

�b�

��2
1

= col�
1≤�≤D

(
�d�a

�
rt
1RT1

�
RT
V−1

�

)

− col�
1≤�≤D

(
�d�a

�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

�
V�1V

−1
�

)
,

�b�

��2
2

= col�
1≤�≤D

(
�d�a

�
rt
diag
1≤s≤R

(1T1
�
T
)V−1

�

)

− col�
1≤�≤D

(
�d�a

�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

�
V�2V

−1
�

)
,

�b�

��2
3

= col�
1≤�≤D

(
�d�a

�
rt
IRTV

−1
�

)

− col�
1≤�≤D

(
�d�a

�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

�
V�3V

−1
�

)
,

�b�
d

��2
1

=a�
rt
1RT1

�
RT
V−1

d
− a�

rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

d
1RT1

�
RT
V−1

d
,

�b�
d

��2
2

=a�
rt
diag
1≤s≤R

(1T1
�
T
)V−1

d
− a�

rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

d
diag
1≤s≤R

(1T1
�
T
)V−1

d
,

�b�
d

��2
3

=a�
rt
IRTV

−1
d

− a�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V−1

d
IRTV

−1
d
.

qab =
�b�

��2
a

diag
1≤�≤D

(V�)

(
�b�

��2
b

)�

=
�b�

d

��2
a

Vd

(
�b�

d

��2
b

)�

, a, b = 1, 2, 3.
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q11 = a
�
rt
1RT1

�
RT
V

−1
d
1RT1

�
RT
art

− 2a�
rt
1RT1

�
RT
V

−1
d
1RT1

�
RT
V

−1
d

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art

+ a
�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V

−1
d

diag
1≤s≤R

(1T1
�
T
)V−1

d
diag
1≤s≤R

(1T1
�
T
)V−1

d

⋅
(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art,

q12 = a
�
rt
1RT1

�
RT
V

−1
d

diag
1≤s≤R

(1T1
�
T
)art

− a
�
rt
1RT1

�
RT
V

−1
d

diag
1≤s≤R

(1T1
�
T
)V−1

d

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art

− a
�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V

−1
d
1RT1

�
RT
V

−1
d

diag
1≤s≤R

(1T1
�
T
)art

+ a
�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V

−1
d
1RT1

�
RT
V

−1
d

diag
1≤s≤R

(1T1
�
T
)V−1

d

⋅
(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art = q21,

q13 = a
�
rt
1RT1

�
RT
V

−1
d
IRTart

− a
�
rt
1RT1

�
RT
V

−2
d

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art

− a
�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V

−1
d
1RT1

�
RT
V

−1
d
IRTart

+ a
�
rt

(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
V

−1
d
1RT1

�
RT
V

−2
d

⋅
(
�2
1
1RT1

�
RT

+ �2
2
diag
1≤s≤R

(1T1
�
T
) + �2

3
IRT

)
art = q31,

q22 = a
�
rt
diag
1≤s≤R

(1T1
�

T
)V−1

d
diag
1≤s≤R

(1T1
�

T
)art

− 2a�
rt
diag
1≤s≤R

(1T1
�

T
)V−1

d
diag
1≤s≤R

(1T1
�

T
)V−1

d

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art

+ a
�
rt

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
V

−1

d
diag
1≤s≤R

(1T1
�

T
)V−1

d
diag
1≤s≤R

(1T1
�

T
)V−1

d

⋅
(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art,

q23 = a
�
rt
diag
1≤s≤R

(1T1
�

T
)V−1

d
IRTart

− a
�
rt
diag
1≤s≤R

(1T1
�

T
)V−2

d

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art

− a
�
rt

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
V

−1

d
diag
1≤s≤R

(1T1
�

T
)V−1

d
IRTart

+ a
�
rt

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
V

−1

d
diag
1≤s≤R

(1T1
�

T
)V−2

d

⋅
(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art = q32,

q33 = a
�
rt
V

−1

d
art − 2a�

rt
IRTV

−2

d

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art

+ a
�
rt

(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
V

−3

d

⋅
(
�2
1
1RT1

�

RT
+ �2

2
diag
1≤s≤R

(1T1
�

T
) + �2

3
IRT

)
art.
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Finally, we have

where Fab is the generic element of the REML Fisher information matrix that was 
calculated for deriving the updating formula of the Fisher-scoring algorithm.

B Appendix: Three‑fold Fay–Herriot model with AR(1) time effects

B.1 The model

Let us consider the model

where ydrt is a direct estimator of the characteristic of interest and xdrt is a row vec-
tor containing the aggregated population values of p auxiliary variables. The sub-
scripts d, r and t represent domains, subdomains and subsubdomains respectively. 
For example, d, r and t may represent area, category (for example, sex-age group) 
and time period respectively. We assume that u1,d ∼ N(0, �2

1
) , u2,dr ∼ N(0, �2

2
) , 

u3,dr = (u3,dr1,… , u2,drT )
� ∼ NT (0, �

2
3
Ωdr(�)) , edrt ∼ N(0, �2

drt
) , d = 1,… ,D , 

r = 1,… ,R , t = 1,… , T  , are mutually independent, with 𝜎2
drt

> 0 known and

Model (B.1) is a generalization of the two-fold Fay–Herriot model with correlated 
time effects described in Section 17.3 of Morales et al. (2021).

At the domain level d and subdomain level r, we define the matrices and vectors

where 1T denotes the T × 1 vector of ones and IT is the T × T  identity matrix. We 
can write model (B.1) in the subdomain form

g3drt(�) ≈ tr

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

q11 q12 q13
q21 q22 q23
q31 q32 q33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞
⎟⎟⎠

−1⎫
⎪⎬⎪⎭
,

(B.1)
ydrt = xdrt� + u

1,d + u
2,dr + u

3,drt + edrt, d = 1,… ,D, r = 1,… ,R, t = 1,… , T ,

Ωdr = Ωdr(�) =
1

1 − �2

⎛⎜⎜⎜⎜⎝

1 � … �T−2 �T−1

� 1 ⋱ �T−2

⋮ ⋱ ⋱ ⋱ ⋮

�T−2 ⋱ 1 �

�T−1 �T−2 … � 1

⎞⎟⎟⎟⎟⎠
T×T

.

Xdr = col
1≤t≤T

(xdrt), Z1,dr = Z2,dr = 1T , Z3,dr = IT , V3,dr = �2
3
Ωdr(�), Ve,dr

= diag
1≤t≤T

(�2
drt
),

ydr = col
1≤t≤T

(ydrt), u3,dr = col
1≤t≤T

(u3,drt) ∼ NT (0,V3,dr), edr

= col
1≤t≤T

(edrt) ∼ NT (0,Ve,dr),
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The variance matrix of ydr is

At the domain level d, we define the vectors and matrices

We can write model (B.1) in the domain form

Let us define the RT × (1 + R + RT) matrix Zd = (Z1,d,Z2,d,Z3,d) 
and the (1 + R + RT) × 1 vector ud = (u1,d, u

�
2,d
, u�

3,d
)� , with 

Vud = var (ud) = diag (�2
1
,V2,d,V3,d) . We can write model (B.2) in the linear 

mixed model form

The variance matrix of yd is

At the population level, we define the vectors and matrices

We can write model (B.1) in the population form

ydr = Xdr� + Z1,dru1,d + Z2,dru2,dr + Z3,dru3,dr + edr, d = 1,… ,D, r = 1,… ,R.

Vdr = var (ydr) = �2
1
1T1

�
T
+ �2

2
1T1

�
T
+ �2

3
Ωdr(�) + Ve,dr, d = 1,… ,D, r = 1,… ,R.

yd = col
1≤r≤R

(ydr), Xd = col
1≤r≤R

(Xdr), Z1,d = 1RT , Z2,d

= diag
1≤r≤R

(Z2,dr), Z3,d = IRT , V2,d = �2
2
IR,

Ωd(�) = diag
1≤r≤R

(Ωdr(�)), V3,d = �2
3
Ωd(�), Ve,d = diag

1≤r≤R
(Ve,dr), u2,d

= col
1≤r≤R

(u2,dr) ∼ NR(0,V2,d),

u3,d = col
1≤r≤R

(u3,dr) ∼ NRT (0,V3,d), ed

= col
1≤r≤R

(edr) ∼ NRT (0,Ve,d).

(B.2)yd = Xd� + Z1,du1,d + Z2,du2,d + Z3,du3,d + ed, d = 1,… ,D.

yd = Xd� + Zdud + ed, d = 1,… ,D.

Vd = var (yd) = �2
1
1RT1

�
RT

+ �2
2
diag
1≤r≤R

(1T1
�
T
) + �2

3
diag
1≤r≤R

(Ωdr(�)) + Ve,d, d = 1,… ,D.

y = col
1≤d≤D

(yd), X = col
1≤d≤D

(Xd), Z1 = diag
1≤d≤D

(Z1,d), Z2 = diag
1≤d≤D

(Z2,d), Z3 = IDRT ,

Ω(�) = diag
1≤d≤D

(Ωd(�)), V1 = �2
1
ID, V2 = �2

2
IDR, V3 = �2

3
Ω(�), Ve = diag

1≤d≤D
(Ve,d),

u1 = col
1≤d≤D

(u1,d) ∼ ND(0,V1), u2 = col
1≤d≤D

(u2,d) ∼ NDR(0,V2),

u3 = col
1≤d≤D

(u3,d) ∼ NDRT (0,V3), e = col
1≤d≤D

(ed) ∼ NRT (0,Ve).

(B.3)y = X� + Z1u1 + Z2u2 + Z3u3 + e,
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where the vectors u1 , u2 , u3 and e are mutually independent. The variance matrix of 
y is V = var (y) = diag

1≤d≤D
(Vd) , i.e.

Let us define the DRT × (D + DR + DRT) matrix Z = (Z1,Z2,Z3) and the 
(D + DR + DRT) × 1 vector u = (u�

1
, u�

2
, u�

3
)� , with Vu = var (u) = diag (V1,V2,V3) . 

We can write model (B.3) in the linear mixed model form

If we assume that 𝜎2
1
> 0 , 𝜎2

2
> 0 , 𝜎2

3
> 0 and � ≠ 0 are known, then the best linear 

unbiased estimator (BLUE) of � and the best linear unbiased predictor (BLUP) of u 
are

The empirical versions, EBLUE of � and EBLUP of u , are obtained by plugging 
estimators �̂�2

1
 , �̂�2

2
 , �̂�2

3
 and �̂� in the place of �2

1
 , �2

2
 , �2

3
 and � , i.e.

where

We are interested in predicting the linear combination of fixed and random effects 
�drt = xdrt� + u1,d + u2,dr + u3,drt . If the variance components are known, the 
BLUP of �drt is �̃�drt = xdrt�̃ + ũ1,d + ũ2,dr + ũ3,drt . The corresponding EBLUP 
of �drt is obtained by substituting the estimators of the variance components 
� = (�2

1
, �2

2
, �2

3
, �) and it has the form

V = �2
1
diag
1≤d≤D

(1RT1
�
RT
) + �2

2
diag
1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
+ �2

3
diag
1≤d≤D

(
diag
1≤r≤R

(Ωdr(�))
)
+ Ve.

y = X� + Zu + e,

(B.4)

�̃ =

�
D�
d=1

X
�
d
V

−1
d
X
d

�−1�
D�
d=1

X
�
d
V

−1
d
y
d

�
,

ũ =V
u
Z
�
V

−1(y − X�̂)

=

⎛⎜⎜⎝

𝜎2
1
I
D

0 0

0 𝜎2
2
I
DR

0

0 0 𝜎2
3
Ω(𝜌)

⎞⎟⎟⎠

⎛⎜⎜⎜⎝

diag
1≤d≤D

(1�
RT
)

diag
1≤d≤D

( diag
1≤r≤R

(1�
T
))

I
DRT

⎞⎟⎟⎟⎠
diag
1≤d≤D

(V−1
d
) col
1≤d≤D

(y
d
− X

d
�̃)

=

⎛⎜⎜⎜⎜⎝

𝜎2
1
col

1≤d≤D

�
1
�
RT
V

−1
d
(y

d
− X

d
�̃)
�

𝜎2
2
col

1≤d≤D

�
diag
1≤r≤R

(1�
T
)V−1

d
(y

d
− X

d
�̃)
�

𝜎2
3
col

1≤d≤D

�
Ω

d
(𝜌)V−1

d
(y

d
− X

d
�̃)
�

⎞⎟⎟⎟⎟⎠
.

(B.5)�̂ = (X�V̂
−1
X)−1X�V̂

−1
y, û = V̂uZ

�V̂
−1(

y − X�̂
)
,

V̂u = diag
1≤d≤D

(Vud) = diag (�̂�2
1
ID, �̂�

2
2
IDR, �̂�

2
3
Ω(𝜌)),

V̂ = diag
1≤d≤D

(Vd) = �̂�2
1
diag
1≤d≤D

(1RT1
�
RT
) + �̂�2

2
diag
1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
+ �̂�2

3
Ω(𝜌) + Ve.
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where �̂ and û are given in (B.5). Similarly as before, we define the BLUP and 
EBLUP vectors

Let PX = X(X�V−1X)−1X�V−1 be the projection matrix in the p-dimensional 
subspace given by the column vectors of X in the metric of V−1 , and define 
P = V−1(I − PX) = V−1 − V−1X(X�V−1X)−1X�V−1 as the projection matrix in the 
residuals complement subspace of y . Then, we may write the model BLUP of � as

B.2 Estimation of variance component parameters

This section gives a Fisher-scoring algorithm to calculate the residual maximum likeli-
hood (REML) estimator of � = (�1, �2, �3, �4)

� = (�2
1
, �2

2
, �2

3
, �)� . The REML log-like-

lihood is

P = V−1 − V−1X(X�V−1X)−1X�V−1 . It holds that

where the derivative of matrix Ωd(�) with respect to � is

�̂�drt = xdrt�̂ + û1,d + û2,dr + û3,drt,

�̃dr = col
1≤t≤T

(�̃�drt), �̃d = col
1≤r≤R

(�̃dr), �̃ = col
1≤d≤D

(�̃d).

�̂dr = col
1≤t≤T

(�̂�drt), �̂d = col
1≤r≤R

(�̂dr), �̂ = col
1≤d≤D

(�̂d).

�̃ =X�̂ + Zũ = X(X�
V

−1
X)−1X�

V
−1
y + ZV

u
Z
�
V

−1(y − X�̂)

=
{
X(X�

V
−1
X)−1X�

V
−1 + ZV

u
Z
�
V

−1[I − X(X�
V

−1
X)−1X�

V
−1]

}
y

= [X(X�
V

−1
X)−1X�

V
−1 + ZV

u
Z
�
V

−1(I − P
X
)]y

= [X(X�
V

−1
X)−1X�

V
−1 + (V − V

e
)V−1(I − P

X
)]y

=X(X�
V

−1
X)−1X�

V
−1
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X
)y − V

e
V

−1(I − P
X
)y

=P
X
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X
)y − V

e
V

−1(I − P
X
)y = y − V

e
V

−1(I − P
X
)y = y − V

e
Py.

lreml(�) = −
DRT − p

2
log 2� +

1

2
log |X�X| − 1

2
log |V| − 1

2
log |X�V−1X| − 1

2
y�Py,

V1 =
𝜕V

𝜕𝜃1
= diag

1≤d≤D
(1RT1

�
RT
), V2 =

𝜕V

𝜕𝜃2
= diag

1≤d≤D

(
diag
1≤r≤R

(1T1
�
T
)
)
,

V3 =
𝜕V

𝜕𝜎2
3

= diag
1≤d≤D

( diag
1≤r≤R

(Ωdr(𝜌)), V4 =
𝜕V

𝜕𝜌
= 𝜎2

3
diag
1≤d≤D

( diag
1≤r≤R

(Ω̇dr(𝜌)),

Ω̇dr(𝜌) =
1

1 − 𝜌2

⎛⎜⎜⎜⎜⎝

0 1 … … (T − 1)𝜌T−2

1 0 ⋱ (T − 2)𝜌T−3

⋮ ⋱ ⋱ ⋱ ⋮

(T − 2)𝜌T−3 ⋱ 0 1

(T − 1)𝜌T−2 … … 1 0

⎞⎟⎟⎟⎟⎠
+

2𝜌Ωdr(𝜌)

1 − 𝜌2
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Further, we have

By taking derivatives of lreml with respect to �a , we have the elements of the score 
vector S = S(�) = (S1, S2, S3, S4)

� , i.e.

By taking second derivatives with respect to �a and �b , taking expectations and 
changing the sign, we obtain the components of the Fisher information matrix 
F = F(�) =

(
Fab

)
a,b=1,2,3,4

 , where

Pa =
�P

��a
= −P

�V

��a
P = −PVaP, a = 1, 2, 3, 4.

Sa =
�lreml
��a

= −
1

2
tr(PVa) +

1

2
y�PVaPy, a = 1, 2, 3, 4.

Table 9  List of Spanish Provinces with corresponding acronyms

Province Acronym Province Acronym

Álava VI Albacete AB
Alicante A Almería AL
Ávila AV Badajoz BA
Baleares IB Barcelona B
Burgos BU Cáceres CC
Cádiz CA Castellón CS
Ciudad Real CR Córdoba CO
Coruña La C Cuenca CU
Gerona GI Granada GR
Guadalajara GU Guipúzcoa SS
Huelva H Huesca HU
Jaén J León LE
Lérida L La Rioja LO
Lugo LU Madrid M
Málaga MA Murcia MU
Navarra NA Orense OU
Asturias (Oviedo) O Palencia P
Palmas Las GC Pontevedra PO
Salamanca SA Santa Cruz de Tenerife TF
Cantabria (Santander) S Segovia SG
Sevilla SE Soria SO
Tarragona T Teruel TE
Toledo TO Valencia V
Valladolid VA Vizcaya BI
Zamora ZA Zaragoza Z
Ceuta CE Melilla ML
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The updating formula of the Fisher-scoring algorithm is

As algorithm seeds, we may take �
(0)

1
= �

(0)

2
= �

(0)

3
= S2∕3 , where 

S2 =
1

DRT−p
(y − X�̌)�V−1

e
(y − X�̌) and �̌ = (X�V−1

e
X)−1X�V−1

e
y and �(0)

4
= 0 . The 

REML estimator of � is

where V̂ = V(�̂) was defined above. Under regularity assumptions, the asymptotic 
distributions of �̂ and �̂ are

Asymptotic confidence intervals, at the level 1 − � , for �a and �j are

where F−1(�̂) = (𝜈ab)a,b=1,2,3,4 , (X
�V−1(�̂)X)−1 = (qij)i,j=1,…,p and z� is the �-quan-

tile of the standard normal distribution. If 𝛽j = 𝛽0 , then the p-value for testing 
H0 ∶ �j = 0 is

C Appendix: Spanish provinces

Table 9 presents the list of Spanish Provinces with their corresponding acronyms.
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