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Abstract—In this letter, we consider the uplink of a cell-free
Massive multiple-input multiple-output (MIMO) network where
each user is decoded by a subset of access points (APs). An
additional step is introduced in the cell-free Massive MIMO
processing: each AP in the uplink locally implements soft MIMO
detection and then shares the resulting bit log-likelihoods on the
front-haul link. The decoding of the data is performed at the
central processing unit (CPU), collecting the data from the APs.
The non-linear processing at the APs consists of the approximate
computation of the posterior density for each received data bit,
exploiting only local channel state information. The proposed
method offers good performance in terms of frame-error-rate
and considerably lower complexity than the optimal maximum-
likelihood demodulator.

Index Terms—cell-free Massive MIMO, non-linear detection,
distributed antenna systems, MIMO detection.

I. INTRODUCTION

CELL-FREE Massive MIMO systems consist of a very
large number of distributed APs serving many users in

the same time-frequency resource [1]. In a cell-free Massive
MIMO system the APs locally estimate the channels towards
all the users and then use these estimates to transmit/decode
data using a linear processing. All the APs are connected to
a CPU and cooperate via a front-haul network, serving the
users in time-division-duplex (TDD) operation, so that there
are actually no cell boundaries. The cell-free Massive MIMO
concept is a recent research topic that has been gaining huge
attention in the last few years. The assumption that all the APs
serve all the users in the system makes the system unscalable
and it is pointless to waste power and computational resources
at an AP to decode users that are very far away and that
are received with a very low signal-to-interference-noise-ratio
(SINR). A user-centric (UC) approach to the cell-free Massive
MIMO is considered in [2], where each user is served only
by the APs that are in its immediate vicinity.

The first papers on cell-free Massive MIMO considered
maximum-ratio transmission/detection implemented locally at
the APs. Recently other literature proposed to improve the
performance by using more sophisticated precoding and com-
bining schemes implemented locally at the APs in order to
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facilitate a scalable implementation. Specifically, in [3] the
authors propose a modification of conjugate beamforming for
the downlink which eliminates the self-interference, and in [4]
and [5] partial zero-forcing on the downlink and successive
interference cancellation on the uplink are considered. The
results reveal a significant performance improvement over
simple maximum ratio transmission/detection. Moreover, [6]
considered sequential processing algorithm with normalized
linear minimum mean square error combining at every AP as-
suming the radio stripe network architecture. Additionally, [7]
introduced a non-orthogonal-multiple-access (NOMA)-based
cell-free Massive MIMO system with successive interference
cancellation implemented at the users’ sides. A fully decentral-
ized architecture for co-located Massive MIMO uplink based
on recursive methods is presented in [8], where the authors
propose algorithms providing a sequence of estimates that
converge asymptotically to the zero-forcing solution.

The main insight behind this letter is that the linear per-AP
processing used in previous work on decentralized detection
[1]–[6] is highly suboptimal, and could even be ill-conditioned.
We propose to improve the performance of cell-free Massive
MIMO by employing an intermediate non-linear step based on
locally-implemented soft MIMO detection. Soft MIMO detec-
tion for point-to-point MIMO systems is a well investigated
topic in the literature, and many algorithms exist with different
performance-complexity tradeoffs [9], [10]. The optimal soft
detector for point-to-point MIMO is also well known [11].

It should be noted that cell-free Massive MIMO, cloud
radio access network (C-RAN) and coordinated multi-point
transmission are all instances of a distributed MIMO archi-
tecture [12], [13]. In such systems, one may either collect
all baseband data to a central unit for processing, or one
may distribute some of the processing at the different access
points. The motivation of distributing some of the processing
is to reduce implementation complexity and specifically reduce
on the required fronthaul signaling. In the literature, various
distributed processing schemes are proposed and compared.
However, to the best of our knowledge, only linear schemes
have been investigated. In this context, our contribution is
to propose and initially investigate the use of non-linear
processing per access point before the corresponding data are
forwarded to a CPU.

Contribution

In this paper, we focus on the uplink of a cell-free Mas-
sive MIMO system considering local non-linear processing
at each AP before sharing the local estimates on the front-
haul link. Specifically, an additional step is introduced in
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the processing where each AP in the uplink performs local
soft MIMO detection. Each AP in the uplink locally (a)
estimates the channels towards the users, (b) collects the
received signals on the uplink (c) performs the local soft
MIMO detection of the data and, (d) sends the resulting bit
log-likelihoods on the front-haul link to the CPU. For each
user, the log-likelihood ratios (LLR) computed at the APs
are shared on the front-haul link and then the CPU collects
LLRs from the APs and decodes the data. We assume that
each user is served by a subset of APs in the network and
the LLRs are computed using the fixed-complexity partial
marginalization (PM) detector of [9]. This algorithm offers
an attractive performance-complexity trade-off and is suitable
for highly parallel hardware. Numerical results reveal that the
local detection based on the PM outperforms the maximum-
ratio combining (MRC), the zero-forcing with decision feed
(ZF-DF) and the minimum-mean-square-error successive in-
terference cancellation (MMSE-SIC) and gives performance
comparable to the exact maximum-likelihood (ML) detector
but with a considerably lower complexity.

II. SYSTEM MODEL AND CHANNEL ESTIMATION

A network that consists of M APs, equipped with a uniform
linear array (ULA) with NAP antennas, and K single-antenna
users is here considered. The M APs are connected by means
of a front-haul network to a CPU wherein data-decoding
is performed. We denote by gk,m ∼ CN

(
0NAP,Rk,m

)
the

channel between the k-th user and the m-th AP, where Rk,m ∈
CNAP×NAP is the spatial correlation matrix, which describes the
spatial properties of the channel and βk,m = tr

(
Rk,m

)
/NAP

is the large-scale fading coefficient that describes geometric
path-loss and shadowing. The dimension in time/frequency
samples of the channel coherence length is denoted by τc , and
the dimension of the uplink training phase by τp < τc . The
pilot sequences transmitted by the users, φk, k = 1, . . . ,K , are
chosen in the set of τp orthonormal sequences, if τp < K pilot
contamination degrades the system performance. The m-th AP
estimates the channel vector gk,m based on the observable
given by the projection of the received signal on the pilot
sequence assigned to the k-th user, i.e.,

ŷk,m =
√

pkgk,m +
K∑
i=1
i,k

√
pigi,mφH

i φk + wk,m , (1)

where pk = τp p̃k denotes the power employed by the k-th
user during the training phase, p̃k is the power transmitted
for each sample of the pilot sequence used by the k-th
user, and wk,m contains the thermal noise contribution with
i.i.d. entries CN(0, σ2

w). The MMSE channel estimate of the
channel gk,m can be written as ĝk,m =

√
pkRk,mΓ

−1
k,mŷk,m ,

where Γk,m =
∑K

i=1 piRi,m |φH
i φk |2 + σ2

wINAP . The channel
estimate is distributed as ĝk,m ∼ CN

(
0NAP, pkRk,mΓ

−1
k,mRk,m

)
,

and the channel estimation error is g̃k,m = gk,m − ĝk,m and
distributed as g̃k,m ∼ CN

(
0NAP,Ck,m

)
, with Ck,m = Rk,m −

pkRk,mΓ
−1
k,mRk,m.

In the uplink data decoding we assume an AP-centric
approach, i.e., the m-th AP serves the Nm users that it

receives with best average channel conditions. Let Sm :
{1, . . . ,K} → {1, . . . ,K} denote the sorting operator for the
vector

[
β1,m, . . . , βK,m

]
, such that βSm(1),m ≥ βSm(2),m ≥ . . . ≥

βSm(K),m. The set Km of the Nm MSs served by the m-
th AP is then given by Km = {Sm(1), Sm(2), . . . , Sm(Nm)}.
Consequently, the set of APs serving the k-th user is defined
as Mk = {m : k ∈ Km}1.

III. UPLINK NON-LINEAR PROCESSING

In uplink, users send their data symbols without any
channel-dependent phase offset. As a result, the signal received
at the m-th AP in the generic symbol interval can be expressed
as

ym =
K∑
k=1

√
ηkgk,mxk + wm , (2)

with ηk and xk representing the uplink transmit power and the
data symbol of the k-th user in the generic symbol interval,
respectively, and wm ∼ CN

(
0NAP, σ

2
wINAP

)
the noise vector.

We define the following vectors and matrices

xS =
[
xS(1), . . . , xS(S)

]T
,

for a generic set S with cardinality S,

B̂Km,m =
[√
ηKm(1)ĝKm(1),m, . . . ,

√
ηKm(Nm)ĝKm(Nm),m

]
,

contains the power control coefficients and the channel esti-
mates for the users in Km,

B̃Km =
[√
ηKm(1)g̃Km(1),m, . . . ,

√
ηKm(Nm)g̃Km(Nm),m

]
,

contains the power control coefficients and the channel estima-
tion errors for the users in Km, and similarly BKm

contains the
power control coefficients and the true channels for the users
in the set Km = {k < Km}. Given the previous definitions, we
rewrite ym as follows:

ym = B̂KmxKm + B̃KmxKm + BKm
xKm

+ wm . (3)

Note that in Eq. (3) the m-th AP knows the channel estimates
for the users in Km, i.e., the matrix B̂Km , and performs the
non-linear processing only for these users.

We define the interference-plus-noise contribution at the m-
th AP as

em = B̃KmxKm + BKm
xKm

+ wm , (4)

where the m-th AP treats the channel estimates of the users
in Km as true channel and considers as interference both the
channel estimation errors for users in Km and the channels
of the users in in Km. We use the Gaussian approximation
of the interference plus noise terms in em, i.e., we assume
em ∼ CN

(
0NAP, σ

2
e,mINAP

)
, with

σ2
e,m =

∑
j∈Km

ηj
tr

(
Cj,m

)
NAP

+
∑
j∈Km

ηj
tr

(
Rj,m

)
NAP

+ σ2
w . (5)

Eq. (3) can be thus written as ym= B̂KmxKm+em .

1Several user-association schemes can be considered, for example, a UC
approach in [2], or performance-maximizing association rules, by defining the
sets Km and Mk accordingly.
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We focus on a real-valued discrete-time matrix-vector model
and assume that in ym the real and imaginary part represent the
inphase and quadrature components of the signal, respectively,
i.e.,

ym = B̂KmxKm + em . (6)

The interference-plus-noise vector em has independent Gaus-
sian elements with zero mean and variance σ2

e,m/2, hence, we
can write the distribution of the received signal ym given the
matrix B̂Km and the symbols xKm as

p
(
ym |B̂Km, xKm

)
=

1√
π2Nmσ4Nm

e,m

×exp
(
− 1
σ2
e,m

ym − B̂KmxKm

2
) (7)

The vector xKm in Eq. (6) has elements that belong to a
finite alphabet A and each entry, say s` , is composed of q
information bits, hence, the vector xKm is composed of 2Nmq
bits, b1, . . . , b2Nmq say, assumed independent. To each bit bi
we associate an a-priori LLR is

L(bi) = log
(

P(bi = 1)
P(bi = 0)

)
, (8)

which expresses what the detector at the generic AP knows
about the bit before the data ym are observed.

Assuming that all the bits are equally likely to be 0 or
1 before observing ym, the LLR given the observable ym is
written as in Eq. (9) at the top on the next page [9].

A. Detection via partial marginalization

We consider the method of PM to compute (9). In the
following we report the basic idea of the PM method and
refer to paper [9] for further details on the procedure. The
idea behind the PM is to perform a two-step marginalization of
the posterior density for ym, performing exact marginalization
over a carefully chosen, fixed number, say rm, of the 2Nmq
bits and to approximately marginalize over the remaining
2Nmq − rm bits, using the max-log philosophy. Let B be a
bit index permutation on [1, . . . , 2Nmq], we marginalize Eq.
(9) exactly over bB1, . . . , bBrm and approximately, using the
max-log philosophy, over bBrm+1, . . . , bB2Nmq . The max-log
approach approximates each of the sums with their largest
term but it is still subject to the constellation constraint
on xKm and requires the solution of NP-hard maximization
problems. To overcome this issue the PM method uses com-
putationally less expensive approximations provided by the
hard ZF-DF detector. The PM approach is thus composed
of two approximations: (i) replacing the marginalization over
bBrm+1, . . . , bB2Nmq by a max-log operation and (ii) solving
this max-log problem approximately using a low-complexity
method based on ZF-DF detector.

B. Sharing the LLRs on the front-haul link

The computation of Eq. (9) via PM is locally implemented
at each AP, ∀ i = 1, . . . , 2Nmq and ∀m = 1, . . . , M . These
values are shared on the front-haul link and the CPU decodes
the generic bit transmitted by the k-th user collecting the LLRs

provided from the APs decoding the k-th user. Otherwise
stated, assume that the k-th users transmits n information bits
b(k)1 , . . . b(k)n , the decoding on the bit b(k)i is obtained by2

f
(
b(k)i

)
=

∑
m∈Mk

L(b(k)i |ym, B̂Km )
b̂
(k)
i =1
≷

b̂
(k)
i =0

0. (10)

C. Complexity

Following [9], the number of operations per bit of the PM
at the m-th AP is O(4N2

m2rm ), while in exact demodulation
(9) it is O(22Nmq). In the proposed approach, this procedure
should be performed at each AP for the data transmitted by
the users in Km. For the k-th user, the APs inMk perform the
non-linear processing based on the PM procedure and share
on the front-haul link the LLRs computed for the k-th user’s
bits. The CPU receives all the LLRs from the APs in Mk

and decodes the data transmitted by the k-th user. Thus, we
can observe that for the k-th user, the number of operations
per bit in our approach is O(|Mk |4N2

m2rm ), while in the exact
demodulation it is O(|Mk |22Nmq), neglecting the sum of the
LLRs at the CPU in both the cases.

While the computational complexity of the proposed ap-
proach is higher compared to linear local processing, as we
will see in the numerical results, the gain in performance is sig-
nificant. As an alternative to the specific non-linear processing
(partial marginalization) proposed here, using deep-learning
methods instead might have potential and is something that
could be investigated in the future. For example, the techniques
in [14] might be applicable. In this context it should also
be stressed that eventual decoding performance is not the
only important aspect. For example, the partial marginalization
algorithm is known to have fixed complexity, hence enabling
the design of ultra-efficient FPGA’s or application specific
integrated circuits. In this respect, there could be value in
using non-linear processing per AP that actually relies on
well-established technology and hardware implementations.
For example, one implementation of SUMIS, a variation on
the partial marginalization theme [15], was developed in [16].

IV. NUMERICAL RESULTS

We consider a square area of 1 km2 wrapped around at the
edges to avoid boundary effects. We assume M = 50 APs
each with an 8-element ULA with λ/2 spacing, i.e., NAP = 8,
and single antenna users. The communication bandwidth is
W = 20 MHz centered over the carrier frequency f0 = 1.9
GHz, the power spectral density (PSD) of the noise is -174
dBm/Hz and the noise figure at the receiver is 9 dB. With
regard to the channels from users to the APs, we assume
Rk,m = βk,mINAP

3. The LSF coefficient βk,m in dB is modelled
as in [17, Table B.1.2.2.1-1]. The shadow fading coefficients
from an AP to different users are correlated and follows
[17, Table B.1.2.2.1-4]. We assume knowledge of the LSF
coefficients at the CPU and the association between users

2According to the well-known Bayes rule and assuming independent
observations at the APs, considering the sum of LLRs is optimal.

3The case of correlated channels was also considered obtaining the same
qualitative relation between the performance.
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L(bi |ym, B̂Km ) = log ©«
∑

xKm :bi (xKm )=1
exp

(
− 1
σ2
e,m

ym − B̂KmxKm

2
)ª®¬ − log ©«

∑
xKm :bi (xKm )=0

exp
(
− 1
σ2
e,m

ym − B̂KmxKm

2
)ª®¬ (9)
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Figure 1. Performance comparison in terms of FER. Parameters: M = 50,
K = 20, NAP = 8 τp = 12.

and APs is performed at the CPU. The length of the channel
estimation phase is τp = 12 samples and each user transmits
100 mW during the uplink training, i.e., p̃k = 100 mW,
∀ k = 1, . . . ,K . Fractional power control (FPC) is assumed
during the uplink data transmission, the transmit power of the
k-th user is ηUL

k
= min

(
Pmax,k, P0ζ

−κ
k

)
, where Pmax,k is the

maximum k-th user transmit power, P0 is a specific parameter
configurable by the serving APs, κ is a path loss compensation
factor, and

ζk =

√ ∑
m∈Mk

βk,m .

In the simulations, we use Pmax,k = 100mW ∀ k, P0 =
−10dBmW and κ = 0.5. We present numerical results in
terms of frame-error-rate (FER) to illustrate the performance
of the proposed approach. Monte Carlo simulation was used
to simulate the FER and at each signal-to-noise-ratio (SNR)
point, we simulate enough frame to count 200 frame errors.
We present the FER performance of the k-th user, positioned
at the centre of the simulation area, as a function of SNRk

defined as

SNRk =

ηkNAP
∑

m∈Mk

βk,m

σ2
w

. (11)

We assume QPSK modulation, i.e., q = 1 in Section III. In
the following results, we assume that all the APs serve the
same number of users, i.e., Nm = N, ∀m = 1, . . . , M and that
the parameter of the PM is the same for all the APs, i.e.,
rm = r, ∀m = 1, . . . , M .

In Figs. 1 and 2, we report the performance in terms of
FER of local PM with different values of r , ZF-DF with V-
BLAST ordering, MMSE-SIC, centralized implementation of
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Figure 2. Performance comparison in terms of FER. Parameters: M = 50,
K = 30, NAP = 8 τp = 12.

PM at the CPU (C-PM), simple MRC implemented at the APs,
and exact ML in (9) with K = 20 and K = 30, respectively.
Coded transmission is assumed and each codeword spans one
realization of the channels. We used a convolutional code with
block length 100 bits and a rate 1/3 as outer code decoded with
the Viterbi algorithm with no iteration between the decoder
and the demodulator. First of all, we can see that increasing the
parameter N , i.e., the number of users served by each AP, in
both the figures, the performance in terms of FER considerably
improves. We can also see that the presence of a larger number
of users in the system, decreases the performance, especially
for the MRC. This is due to the increase of the variance of the
interference-plus-noise contribution. Higher numbers of the
parameter r make the performance of the PM closer to the
exact demodulation, with a gain in computational complexity.
We can also see that the local PM offers better performance
with respect to the ZF-DF and MMSE-SIC. The C-PM offers
the better performance compared with the local alternatives
because it requires a complete sharing of the channel estimates
on the front-haul link.

V. CONCLUSIONS

In this work, we considered the uplink of a cell-free Massive
MIMO system with non-linear processing at each AP. An addi-
tional step is introduced at the APs which locally implements
a non-linear soft MIMO detector then shares the so-obtained
per-bit log-likelihood ratios on the front-haul link. We assume
that each AP decodes a subset of users in the system. The
decoding of the data is performed at the CPU, by collecting
soft bits from the APs for each user. The soft MIMO detector
at the APs is based on the PM algorithm [9], and computes
the posterior density for the received data bits exploiting only
local channel state information. Numerical results show the
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effectiveness of the proposed approach, that gives performance
close to that of exact demodulation with a significantly lower
complexity, offering a considerable improvement with respect
to the traditional approaches in cell-free Massive MIMO.
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