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Abstract
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-
5G wireless access technology that can provide huge throughput, compared
with the current technology, in order to satisfy some requirements for the future
generations of wireless networks. The research described in this thesis proposes
the design of some applications of the massive MIMO technology that can be im-
plemented in order to increase the spectral efficiency per cell of the future wire-
less networks through a simple and low complexity signal processing. In par-
ticular, massive MIMO is studied in conjunction with two other topics that are
currently under investigation for the future wireless systems, both in academia
and in industry: the millimeter wave frequencies and the distributed antenna
systems. The first part of the thesis gives a brief overview on the requirements of
the future wireless networks and it explains some of the mathematical tools used
in the current massive MIMO literature. Then, an overview on the differences
between massive MIMO techniques at the conventional cellular frequencies and
at millimeter wave frequencies is presented and exhaustively discussed. Six
key basic differences are pinpointed, along with the implications that they have
on the architecture and algorithms of the communication transceivers and on
the attainable performance in terms of reliability and multiplexing capabilities.
Subsequently, “doubly massive MIMO” systems at millimeter wave frequencies
are introduced, i.e., systems with a large number of antennas at both the trans-
mitter and the receiver. For complexity reasons and energy consumption issues,
fully digital pre-coding and post-coding structures may turn out to be unfeasi-
ble, and thus suboptimal structures, making use of simplified hardware and a
limited number of radio-frequency chains, have been investigated. A compar-
ative assessment of several suboptimal pre-coding and post-coding structures
with large number of antennas is discussed. Numerical results show that fully-
digital beamformers may actually achieve a larger energy efficiency than lower-
complexity solutions, as well as that low-complexity beam-steering purely ana-
log beamforming may in some cases represent a good performance-complexity
trade-off solution. Finally, the thesis focuses on the recently introduced cell-free
massive MIMO architecture, wherein a very large number of distributed access
points, connected to a central processing unit, simultaneously and jointly serve
a much smaller number of mobile stations. It contrasts the originally proposed
formulation of cell-free massive MIMO with a user-centric approach wherein
each mobile station is served only by a limited number of access points. Ex-
ploiting the framework of successive lower-bound maximization, this thesis also
proposes and analyzes two power allocation strategies aimed at maximizing the
throughput and the fairness of these systems. Additionally, advanced signal
processing techniques, to improve the performance of the user-centric approach
both in uplink and in downlink, are proposed. The proposed schemes can be
implemented locally, i.e., with no need to exchange information with the central
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processing unit. Numerical results show that the user-centric approach, which
requires smaller backhaul overhead and it is more scalable than the cell-free
massive MIMO deployment, also achieves generally better performance than
the cell-free massive MIMO approach for the vast majority of the users in the
system, especially on the uplink. Regarding the proposed advanced signal pro-
cessing techniques, the results show that they provide remarkable performance
improvements with respect to the competing alternatives.
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Chapter 1

Introduction

1.1 Future wireless networks and massive MIMO

The term “5G and beyond-5G wireless networks” refers to future generations of
mobile wireless communication systems. The vision for these next-generation
systems is to enable groundbreaking mobile applications requiring high-quality
low-latency visual, tactile and audio telepresence, in addition to massive ca-
pacity (upwards of 1000 times with respect to 4G systems) and connectivity
(billions of users and machines) [1]. Of these requirements, certainly the one
that gets the most attention is the need for radically higher data rates across the
board, because current coding techniques are very close to the theoretical Shan-
non spectral efficiency bounds limits for single user capacity. For this reason,
it is necessary to introduce new technologies in the design of future wireless
networks. Wireless communication is based on radio, meaning that electromag-
netic (EM) waves are designed to carry information from a transmitter to one
or more receivers. Since the EM waves propagate in all possible directions from
the transmitter, the signal energy spreads out and less energy reaches a desired
receiver as the distance increases. To deliver wireless services with sufficiently
high received signal energy over wide coverage areas, researchers at Bell Labs
proposed in 1947 to deploy a cellular network topology [2]. According to this
idea, the coverage area is divided into cells that operate individually using a
fixed-location base station (BS); that is, a piece of network equipment that facil-
itates wireless communication between a device and the network. The cellular
concept was further developed and analyzed over the subsequent decades and
later deployed in practice. Without any doubt, the cellular concept was a major
breakthrough and has been the main driver to deliver wireless services in the
last forty years (since the “first generation” of mobile phone systems emerged
in the 1980s). Briefly, a cellular network consists of a set of BSs and a set of
mobile stations (MSs), also simply referred to as users. Each MS is connected
to one of the BSs, which provides service to it. The downlink refers to signals
sent from the BSs to their respective MSs, while the uplink refers to transmis-
sions from the MSs to their respective BSs. Cellular networks were originally
designed for wireless voice communications, but it is wireless data transmission
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that dominates nowadays. Video on-demand accounts for the majority of traf-
fic in wireless networks and is also the main driver of the predicted increase in
traffic demand. The area throughput is thus a highly relevant performance metric
of contemporary and future cellular networks. It is measured in bit/s/m2 and
can be modeled using the following high-level formula:

Area throughput
[

bit
s m2

]
= B [Hz] D

[
cell
m2

]
SE
[

bit
s Hz cell

]
, (1.1)

where B is the bandwidth, D is the average cell density, and SE is the spectral
efficiency per cell, i.e., the amount of information that can be transferred per
second over one Hz of bandwidth in each cell. These are the three main compo-
nents that determine the area throughput, and that need to be increased in order
to achieve higher area throughput in future cellular networks. It is possible to
obtain the 1000× requirement in the capacity of the network as [1]

Area throughput︸ ︷︷ ︸
1000×

= B︸︷︷︸
10×

D︸︷︷︸
10×

SE︸︷︷︸
10×

. (1.2)

The massive capacity in the future wireless networks can be obtained designing
a network using the three new technologies detailed in the following:

(a) Extreme densification and offloading to improve the density of cells per
area, i.e., more cells per unit area.

(b) Increased bandwidth, primarily by moving toward and into millimeter
wave (mm-Wave) spectrum but also by making better use of WiFi’s unli-
censed spectrum in the 5-GHz band, i.e., more Hz.

(c) Increased spectral efficiency per cell, primarily through advances in MIMO,
such as massive MIMO.

This thesis focuses on the design of some massive MIMO technologies that can
be implemented in order to increase the spectral efficiency per cell of the future
wireless networks. In particular, in the following chapters, massive MIMO is
used in conjunction with two other current research topics for the future wireless
networks: the mm-Wave frequencies and the distributed antenna systems.
Stemming from research that blossomed in the late 1990s, MIMO communica-
tion was introduced into WiFi systems around 2006 and into 3G cellular shortly
thereafter. In essence, MIMO embodies the spatial dimension of the communi-
cation that arises once a multiplicity of antennas are available at BSs and mobile
devices. If the entries of the channel matrix exhibit sufficient statistical inde-
pendence by virtue of spacing, cross-polarization and/or angular disposition
multiple spatial dimensions become available for signaling and the spectral ef-
ficiency increases, as explained for example in [3]. In single-user MIMO (SU-
MIMO), the dimensions are limited by the number of antennas that can be ac-
commodated on a mobile device, because of limited space. However, by having
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each BS communicating with several users concurrently, the multiuser version
of MIMO (MU-MIMO) can effectively aggregate the users antennas and over-
come this bottleneck. Then, the signaling dimensions are given by the smallest
between the aggregate number of antennas at those users and the number of an-
tennas at the BS. Furthermore, in what is now known as coordinated multipoint
(CoMP) transmission/reception, multiple BSs can cooperate and act as a single
effective MIMO transceiver thereby turning some of the interference in the sys-
tem into useful signals; this concept in fact underpins many of the approaches to
interference and mobility management. Well-established by the time long term
evolution (LTE) was developed, MIMO was a native ingredient thereof with
two-to-four antennas per mobile device and as many as eight per BS sector, and
it appeared that, because of form factors and other apparent limitations, such
was the extent to which MIMO could be leveraged.
Marzetta was instrumental in articulating a vision in which the number of an-
tennas increased by more than an order of magnitude, with the landmark paper
[4]. The proposal was to equip BSs with a number of antennas much larger than
the number of active users per time–frequency signaling resource, and given
that under reasonable time–frequency selectivities accurate channel estimation
can be conducted for at most some tens of users per resource, this condition
puts hundreds of antennas per BS. This bold idea, initially termed “large-scale
antenna systems” but now more popularly known as “massive MIMO”, offers
enticing benefits:

• Enormous enhancements in spectral efficiency without the need for increased
BS densification, with the possibility of trading some of those enhance-
ments off for power efficiency improvements [5], [6].

• Smoothed out channel responses because of the vast spatial diversity, which
brings about the favorable action of the law of large numbers. In essence,
all small-scale randomness abates as the number of channel observations
grows.

• Simple transmit/receive structures because of the quasi-orthogonal nature of
the channels between each BS and the set of active users sharing the same
signaling resource. For a given number of active users, such orthogonality
sharpens as the number of BS antennas grows and even plain single-user
beamforming, perform close-to-optimally. In a practical multicell system,
these benefits are not actually obtained, due to the effect of pilot contami-
nation, and the finit number of BS antennas.

The promise of these benefits has elevated the massive MIMO technology to a
central position in the research and developments on 5G and beyond-5G wire-
less networks [7], with a foreseen role of providing a high-capacity umbrella of
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ubiquitous coverage in support of underlying tiers of small cells. However, de-
spite these significant benefits, several challenges have begun to be addressed in
the recent past both in academia and industry. In particular:

1. Pilot contamination and overhead reduction: Pilot transmissions can be made
orthogonal among same-cell users, to facilitate cleaner channel estimates
[8], [9] but must be reused across cells, otherwise all available resources
would be consumed by pilots. This inevitably causes interference among
pilots in different cells and hence puts a floor on the quality of the chan-
nel estimates. This, so-called “pilot contamination” interference, does not
vanish as the number of BS antennas grows large. However, it was re-
cenly shown that, using more realistic channel models and high perform-
ing signal processing schemes, the spectral efficiency of the system grows
unbounded as the number of antennas increases, even under pilot contam-
ination [10], [11].

2. Architectural challenges: A more serious challenge to the realization of the
massive MIMO has to do with its architecture. This vision requires radi-
cally different BS structures where, in lieu of a few high-power amplifiers
feeding a handful of sector antennas, a myriad of tiny antennas fed by cor-
respondingly low-power amplifiers are needed; most likely each antenna
would have to be integrated with its own amplifier. Scalability, antenna
correlations, mutual couplings and cost are some of the issues that must
be sorted out. At the same time, opportunities arise for innovative topolo-
gies such as conformal arrays along rooftops or on building facades. As an
example, references [12], [13] explore alternative and highly innovative an-
tenna designs based on the utilization of an electromagnetic lens-focusing
antenna.

3. Full-Dimension MIMO and Elevation Beamforming: Existing BSs mostly fea-
ture linear horizontal arrays, which in tower structures can only accom-
modate a limited number of antennas, due to form factors, and which only
exploit the azimuth angle dimension. By adopting planar 2D arrays and
further exploiting the elevation angle, the so-called full-dimension MIMO
can house many more antennas with the same form factor [14]. As a side
benefit, tailored vertical beams increase the signal power and reduce inter-
ference to users in neighboring cells.

4. Channel models: Together with the architectural issues, there are those re-
lated to channel models, which to be sound require extensive field mea-
surements. Antenna correlations and couplings for massive arrays with
relevant topologies must be determined, and a proper modeling of their
impact must be established; in particular, the degree of actual channel or-
thogonalization in the face of such nonidealities must be verified. And,
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for full-dimensional MIMO, besides azimuth, the modeling needs to in-
corporate elevation, which is a dimension on which far less data exists
concerning power spectra and angle spreads [15], [16].

5. Coexistence with small cells: Massive MIMO BSs would most likely have to
coexist with tiers of small cells, which would not be equipped with mas-
sive MIMO due to their smaller form factor. Although the simplest alterna-
tive is to segregate the corresponding transmissions in frequency, the large
number of excess antennas at massive MIMO BSs may offer the opportu-
nity of spatial nulling and interference avoidance with relative simplicity
and little penalty. As networks become dense and more traffic is offloaded
to small cells, the number of active users per cell will diminish and the
need for massive MIMO may decrease. Aspects such as cost and backhaul
will ultimately determine the balance between these complementary ideas
[17], [18].

6. Coexistence with mm-Wave: Mm-Wave communication requires many an-
tennas at the transmitter and at the receiver for beamsteering. The anten-
nas are much smaller at these frequencies and thus they can conceivably
fit very large numbers into portable devices. These antennas can indeed
provide beamforming power gain but also MIMO opportunities. Any ap-
plication of massive MIMO at mm-Wave frequencies would have to find
the correct balance between power gain/interference reduction and paral-
lelization [19], [20].

1.2 Thesis contributions

As mentioned above, this thesis focuses on the study of some applications of
massive MIMO technology for future wireless networks. In particular massive
MIMO is used in conjunction with two other current research topics for the fu-
ture wireless networks: the mm-Wave frequencies and the distributed antenna
systems.
A summary of the thesis contributions is provided in the following.

• Chapter 2: Definition of massive MIMO Systems
The next chapter of the thesis gives a brief definition of massive MIMO
systems and an historical and technical description of this technology. The
conventional channel model and the uplink and downlink system model
that is currently used in literature are introduced. The channel estimation
in a massive MIMO network is described and the properties of channel
hardening and favorable propagation are explained. Finally, an overview
on the uplink and downlink spectral efficiency bounds for massive MIMO
system is provided, using the tools proposed in the current literature.
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• Chapter 3: Massive MIMO at mm-Wave and at µ-Wave frequencies
The third chapter of the thesis presents an overview on the difference be-
tween massive MIMO at the conventional cellular frequencies and at mm-
Wave. Initially conceived for conventional cellular frequencies in the sub-
6 GHz range (µ-Wave), the massive MIMO concept has been then pro-
gressively extended to the case in which mm-Wave frequencies are used.
However, due to different propagation mechanisms in urban scenarios,
the resulting MIMO channel models at µ-Wave and mm-Wave are radi-
cally different. Six key basic differences are pinpointed in this chapter of
the thesis, along with the implications that they have on the architecture
and algorithms of the communication transceivers and on the attainable
performance in terms of reliability and multiplexing capabilities.

The material in this chapter is based on the journal article

- S. Buzzi and C. D’Andrea “Massive MIMO 5G Cellular Networks:
mm-Wave vs. µ-Wave Frequencies”, ZTE Communications-Special Topic:
5G New Radio (NR): Standard and Technology, Vol. 15 No. S1, June 2017.

• Chapter 4: Doubly massive MIMO mm-Wave systems
The fourth chapter of the thesis focuses on the “doubly massive MIMO”
systems at mm-Wave, that is a system with a large number of antennas
both at the transmitter and at the receiver. For complexity reasons and en-
ergy consumption issues, fully digital pre-coding and post-coding struc-
tures may turn out to be unfeasible, and thus suboptimal structures, mak-
ing use of simplified hardware and a limited number of RF chains, have
been investigated. This chapter considers and makes a comparative as-
sessment of several suboptimal pre-coding and post-coding structures for
a cellular MU-MIMO system with large number of antennas. Analyti-
cal formulas for the asymptotic achievable spectral efficiency (ASE) and
for the global energy efficiency (GEE) of several beamforming structures
are derived in the large number of antennas regime. Using the most re-
cently available data for the energy consumption of phase shifters and
switches, numerical results show that fully-digital beamformers may ac-
tually achieve a larger energy efficiency than lower-complexity solutions,
as well as that low-complexity beam-steering purely analog beamforming
may in some cases represent a good performance-complexity trade-off so-
lution.

The material in this chapter is based on the journal article

- S. Buzzi and C. D’Andrea, “Energy Efficiency and Asymptotic Per-
formance Evaluation of Beamforming Structures in Doubly Massive
MIMO mmWave Systems”, in IEEE Transactions on Green Communica-
tions and Networking, vol. 2, no. 2, pp. 385-396, June 2018,
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on its conference versions published as

- S. Buzzi and C. D’Andrea, “Doubly Massive mmWave MIMO Sys-
tems: Using Very Large Antenna Arrays at Both Transmitter and Re-
ceiver”, in Proc. of 2016 IEEE Global Communications Conference (GLOBE-
COM), Washington, DC, 2016, pp. 1-6,

- S. Buzzi and C. D’Andrea, “Are mmWave Low-Complexity Beam-
forming Structures Energy-Efficient? Analysis of the Downlink MU-
MIMO”, in Proc. of 2016 IEEE Globecom Workshops (GC Wkshps), Wash-
ington, DC, 2016, pp. 1-6,

and on the talk

- C. D’Andrea, “The doubly massive MIMO regime in mmWave com-
munications”, talk delivered at the 2016 Tyrrhenian International Work-
shop on Digital Communications (TIW16), Sept. 2016.

• Chapter 5: User-centric approach to cell-free massive MIMO networks
The fifth chapter of the thesis focuses on the recently introduced cell-free
(CF) massive MIMO architecture, wherein a very large number of dis-
tributed access points (APs), connected to a central processing unit (CPU),
simultaneously and jointly serve a much smaller number of MSs. In this
context, the term AP is used in order to distinguish it from the BS, that
is characterized by an higher complexity with respect to the single AP in
a distributed setup. The chapter extends the CF approach to the case in
which both the APs and the MSs are equipped with multiple antennas,
proposing a beamfoming scheme that, relying on the channel hardening
effect, does not require channel estimation at the MSs. It contrasts the orig-
inally proposed formulation of CF massive MIMO with a user-centric (UC)
approach wherein each MS is served only by a limited number of APs.
Exploiting the framework of successive lower-bound maximization, the
chapter of the thesis also proposes and analyzes power allocation strate-
gies aimed at either sum-rate maximization or minimum-rate maximiza-
tion, both for the uplink and downlink. Additionally, this chapter pro-
poses advanced signal processing techniques to improve the performance
of the UC architecture by using local partial zero forcing (PZF) pre-coding
on the downlink and successive interference cancellation (SIC) on the up-
link. The proposed schemes can be implemented locally, i.e., the channel
estimates and the beamformers at the APs are computed and exploited
locally, with no need to exchange information with the CPU. Numerical
results show that the UC approach, which requires smaller backhaul over-
head and is more scalable than the CF deployment, also achieves gener-
ally better performance than the CF approach for the vast majority of the
users, especially on the uplink. Regarding the advanced signal processing
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techniques here proposed, the results show that the proposed transceiver
algorithms provide remarkable performance improvements with respect
to the simple CM pre-coding on the downlink and MR post-coding on the
uplink.

The material in this chapter is based on the journal articles

- S. Buzzi and C. D’Andrea, “Cell-Free Massive MIMO: User-Centric
Approach”, in IEEE Wireless Communications Letters, vol. 6, no. 6, pp.
706-709, Dec. 2017,

- S. Buzzi, C. D’Andrea, A. Zappone and C. D’Elia “User-Centric 5G
Cellular Networks: Resource Allocation and Comparison with the
Cell-Free Massive MIMO Approach”, submitted to IEEE Transactions
on Wireless Communications, July 2018,

and on the conference papers

- S. Buzzi and C. D’Andrea, “User-Centric Communications versus Cell-
free Massive MIMO for 5G Cellular Networks”, in Proc. of WSA 2017;
21th ITG International Workshop on Smart Antennas, Berlin, Germany,
Mar. 2017,

- S. Buzzi, C. D’Andrea and C. D’Elia, “User-Centric Cell-Free Mas-
sive MIMO with Interference Cancellation and Local ZF Downlink
Precoding”, in Proc. of 2018 15th International Symposium on Wireless
Communication Systems (ISWCS), Lisbon, Aug. 2018, pp. 1-5.

• Chapter 6: Conclusions and future developments
The last chapter of the thesis gives some concluding remarks on the con-
tribution of this work. The content of each chapter is briefly summarized
and discussed. Finally, a brief overview on the future developments of the
massive MIMO technology is given.

1.3 Other contributions

In addition to the articles listed above, the author has had other publications/submissions
during the Ph.D. studies. In the following a brief abstract of each paper is given.

1.3.1 Journals

• S. Buzzi, C. D’Andrea, T. Foggi, A. Ugolini and G. Colavolpe, “Single-
Carrier Modulation Versus OFDM for Millimeter-Wave Wireless MIMO”,
in IEEE Transactions on Communications, vol. 66, no. 3, pp. 1335-1348,
March 2018.

This paper presents results on the achievable spectral efficiency and on the en-

ergy efficiency for a wireless MIMO link operating at mm-Wave in a typical 5G
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scenario. Two different single-carrier modem schemes are considered, i.e., a tra-

ditional modulation scheme with linear equalization at the receiver, and a single-

carrier modulation with cyclic prefix, frequency-domain equalization and fast

Fourier transform (FFT)-based processing at the receiver; these two schemes are

compared with a conventional MIMO orthogonal frequency division multiplex-

ing transceiver structure. The analysis reported in the paper jointly takes into

account the peculiar characteristics of MIMO channels at mm-Wave frequencies,

the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the

finite cardinality of the modulation structure, and the non-linear behavior of the

transmitter power amplifiers. Results show that the best performance is achieved

by single-carrier modulation with time-domain equalization, which exhibits the

smallest loss due to the non-linear distortion, and whose performance can be fur-

ther improved by using advanced equalization schemes. Results also confirm that

performance gets severely degraded when the link length exceeds 90-100 m and

the transmit power falls below 0 dBW.

• S. Buzzi, C. D’Andrea, Dejian Li and Shulan Feng “MIMO-UFMC Transceiver
Schemes for Millimeter Wave Wireless Communications”, submitted to
IEEE Transactions on Communications, in second-round review, July 2018.

The Universal Filtered MultiCarrier (UFMC) modulation is among the most con-

sidered solutions for the realization of beyond-Orthogonal Frequency Division

Multiplexing (OFDM) air interfaces for future wireless networks. This paper fo-

cuses on the design and analysis of an UFMC transceiver equipped with multiple

antennas and operating at mm-Wave carrier frequencies. The paper provides the

full mathematical model of a MIMO-UFMC transceiver, taking into account the

presence of hybrid analog/digital beamformers at both ends of the communica-

tion links. Then, several detection structures are proposed, both for the case of

single-packet isolated transmission, and for the case of multiple-packet continu-

ous transmission. In the latter situation, the paper also considers the case in which

no guard time among adjacent packets is inserted, trading off an increased level

of interference with higher values of spectral efficiency. At the analysis stage,

the several considered detection structures and transmission schemes are com-

pared in terms of bit-error-rate, root-mean-square-error, and system throughput.

The numerical results show that the proposed transceiver algorithms are effective

and that the linear MMSE data detector is capable of well managing the increased

interference brought by the removal of guard times among consecutive packets,

thus yielding throughput gains of about 10 - 13 %. The effect of phase noise at

the receiver is also numerically assessed, and it is shown that the recursive im-

plementation of the linear MMSE exhibits some degree of robustness against this

disturbance.
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1.3.2 Conferences

• S. Buzzi, C. D’Andrea, T. Foggi, A. Ugolini and G. Colavolpe, “Spectral Ef-
ficiency of MIMO Millimeter-Wave Links with Single-Carrier Modulation
for 5G Networks”, in Proc. of WSA 2016; 20th International ITG Workshop on
Smart Antennas, Munich, Germany, 2016, pp. 1-8.

Future wireless networks will extensively rely upon bandwidths centered on car-

rier frequencies larger than 10GHz. Indeed, recent research has shown that, de-

spite the large pathloss, mm-Wave frequencies can be successfully exploited to

transmit very large data-rates over short distances to slowly moving users. Due

to hardware complexity and cost constraints, single-carrier modulation schemes,

as opposed to the popular multi-carrier schemes, are being considered for use at

mm-Wave frequencies. This paper presents preliminary studies on the achiev-

able spectral efficiency on a wireless MIMO link operating at mm-Wave in a typi-

cal 5G scenario. Two different single-carrier modem schemes are considered, i.e.,

a traditional modulation scheme with linear equalization at the receiver, and a

single-carrier modulation with cyclic prefix, frequency-domain equalization and

FFT-based processing at the receiver. Results show that the former achieves a

larger spectral efficiency than the latterand they also confirm that the spectral

efficiency increases with the dimension of the antenna array, as well as that per-

formance gets severely degraded when the link length exceeds 90-100 meters and

the transmit power falls below 0dBW. Nonetheless, mm-Wave appear to be very

suited for providing very large data-rates over short distances.

• S. Buzzi and C. D’Andrea, “Subspace Tracking Algorithms for Millimeter
Wave MIMO Channel Estimation with Hybrid Beamforming”, in Proc. of
WSA 2017; 21th International ITG Workshop on Smart Antennas, Berlin, Ger-
many, 2017, pp. 1-6.

This paper proposes the use of subspace tracking algorithms for performing MIMO

channel estimation at mm-Wave frequencies. Using a subspace approach, a pro-

tocol enabling the estimation of the right (resp. left) singular vectors at the trans-

mitter (resp. receiver) side is developed; then, the projection approximation sub-

space tracking with deflation (PASTd) and the orthogonal Oja (OOJA) algorithms

are adapted to the proposed framework and two channel estimation algorithms

are obtained. The hybrid analog/digital nature of the beamformer is also explic-

itly taken into account at the algorithm design stage. Numerical results show that

the proposed estimation algorithms are effective, and that they perform better

than two relevant competing alternatives available in the open literature.

• S. Buzzi and C. D’Andrea, “Multiuser Millimeter Wave MIMO Channel Es-
timation with Hybrid Beamforming”, poster presentation at EuCNC 2017;
European Conference on Networks and Communications, Oulu, Finland, Jun.
2017.
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This presentation focuses on MU-MIMO channel estimation and data transmis-

sion at mm-Wave frequencies. The proposed approach relies on the TDD protocol

and is based on two distinct phases. First of all, the BS sends a suitable probing

signal so that all the MSs, using a subspace tracking algorithm, can estimate the

dominant left singular vectors of their BS-to-MS propagation channel. Then, each

MS, using the estimated dominant left singular vectors as pre-coding beamform-

ers, sends a suitable pilot sequence so that the BS can estimate the corresponding

right dominant channel singular vectors and the corresponding eigenvalues. The

low-complexity PASTd algorithm is used at the MSs for dominant subspace esti-

mation, while pilot-matched (PM) and zero-forcing (ZF) reception is used at the

BS. The proposed algorithms can be used in conjuction with an analog RF beam-

former and are shown to exhibit very good performance.

• S. Buzzi, M. Lops, C. D’Andrea and C. D’Elia “Co-existence Between a
Radar System and a Massive MIMO Wireless Cellular System”, in Proc.
of 2018 IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Kalamata, Jun. 2018, pp. 1-5.

In this paper the uplink of a massive MIMO communication system is considered,

using 5G New Radio-compliant multiple access, which is to co-exist with a radar

system using the same frequency band. The paper proposes a system model tak-

ing into account the reverberation (clutter) produced by the radar system at the

massive MIMO receiver. Then, several linear receivers for uplink data-detection

are proposed, ranging by the simple channel-matched beamformer to the zero-

forcing and linear minimum mean square error receivers for clutter disturbance

rejection. Results show that the clutter may have a strong effect on the perfor-

mance of the cellular communication system, but the use of large-scale antenna

arrays at the base station is key to provide increased robustness against it, at least

as far as data-detection is concerned.

• C. D’Andrea, S. Buzzi, D. Li and S. Feng “Adaptive Data Detection in
Phase-Noise Impaired MIMO-UFMC Systems at mmWave”, in Proc. of
2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC), Bologna, Italy, Sep. 2018, pp. 231-235.

This paper provides results on the use of the UFMC modulation scheme in MIMO

wireless links operating at mm-Wave frequencies. After having provided math-

ematical details on the MIMO-UFMC signal model, taking into account both the

hybrid analog/digital nature of the beamformers and the phase noise at the re-

ceiver, adaptive algorithms, based on the normalized least-mean-squares (NLMS)

and on the recursive-least-squares (RLS) are proposed, for low-complexity data-

detection. The proposed transceiver also includes a channel independent trans-

mit beamformer, so as to avoid the need for channel state information at the trans-

mitter, as well as a transmission format wherein no spacing between consecutive
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data packets is adopted, in order to have increased spectral efficiency. Numerical

results show that the proposed algorithms exhibit a certain amount of robustness

to the phase noise and achieve satisfactory performance.

• S. Buzzi, C. D’Andrea, D. Li and S. Feng “MIMO-UFMC Transceiver Schemes
for Millimeter Wave Wireless Communications”, in Proc. of Chinacom 2018
- 13th EAI International Conference on Communications and Networking in
China, October 2018.

This paper provides results on the use of UFMC modulation scheme in MIMO

wireless links operating at mm-Wave frequencies. First of all, full mathematical

details on the processing needed to realize a MIMO-UFMC transceiver at mm-

Wave, taking into account also the hybrid analog/digital nature of the beamform-

ers, are given. Then, several reception structures are proposed, considering also

the case of continuous packet transmission with no guard intervals among the

packets. In particular, an adaptive low complexity MMSE receiver is proposed

that is shown to achieve very satisfactory performance. A channel independent

transmit beamformer is also considered, in order to avoid the need for channel

state information at the transmitter. Numerical results show that the proposed

transceiver schemes are effective, as well as that the continuous packet transmis-

sion scheme, despite increased interference, attains the highest values of system

throughput.
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Chapter 2

Definition of massive MIMO
Systems

2.1 Introduction

This chapter of the thesis briefly defines many of the basic concepts related to
massive MIMO technology [21]. A formal definition of massive MIMO networks
is provided, the correlated and uncorrelated channel models are described, the
uplink and downlink system models used in current literature are detailed. The
channel estimation in a massive MIMO network is described and, finally, the
properties of channel hardening and favorable propagation are explained. Fi-
nally, an overview on the uplink and downlink spectral efficiency bounds for
massive MIMO system is provided, using the tools proposed in the current lit-
erature.
A highly spectrally efficient coverage tier in a cellular network can be character-
ized as follows:

• It uses space division multiple access (SDMA) to achieve a multiplexing
gain by serving multiple MSs on the same time-frequency resource.

• It has more BS antennas than MSs per cell to achieve efficient interference
suppression. If the number of MSs grows in a cell, the BS should be up-
graded so that the number of antennas increases proportionally.

• It operates in time division duplex (TDD) mode to limit the channel state
information (CSI) acquisition overhead, due to the multiple antennas, and
to not rely on parametrizable channel models.

The massive MIMO technology embraces these design guidelines, making it an
efficient way to achieve high spectral efficiency in the coverage tier of future
wireless networks. A concise definition of massive MIMO can be the following [4],
[21].

Definition: A massive MIMO network is a multicarrier cellular network with L
cells that operate according to a synchronous TDD protocol1. The j−th BS is

1A synchronous TDD protocol refers to a protocol in which uplink and downlink transmis-
sions within different cells are synchronized.
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equipped with Mj � 1 antennas and it communicates with Kj single-antenna
MSs simultaneously on each time/frequency sample, with antenna-MS ratio
Mj
Kj

> 1. Each BS operates individually and processes its signals using linear
receive post-coding and linear transmit pre-coding.

The key point of the massive MIMO system is not which multicarrier modu-
lation scheme is used, but that the frequency resources are divided into flat-
fading subcarriers. The coherence bandwidth Bc describes the frequency interval
over which the channel responses are approximately constant. One or multiple
subcarriers fit(s) into the coherence bandwidth, thus the channel observed on
adjacent subcarriers are either approximately equal or closely related through
a deterministic transformation. Hence, there is generally no need to estimate
the channel on every subcarrier. Similarly, the time variations of the channels
are small between adjacent samples and the coherence time Tc describes the time
interval over which the channel responses are approximately constant. A coher-
ence block consists of a number of subcarriers and time samples over which the
channel response can be approximated as constant and flat-fading. If the coher-
ence bandwidth is Bc and the coherence time is Tc, then each coherence block
contains τc = BcTc complex-valued samples.

2.2 Channel model

In the following of this chapter, following the current literature on massive
MIMO system, single-antenna MSs are assumed and the cell index is explicitly
reported, i.e., all the processing is made after the MS-BS selection. The channel
response between the k−th single-antenna MS in `−th cell and the BS in j−th
cell is denoted by h`,k,j ∈ CMj , where each of the elements corresponds to the
channel response from the MS to one of the BS’s Mj antennas. The channel re-
sponse is the same in both uplink and downlink of a coherence block. The uplink
channel is denoted as h`,k,j and the downlink channel as hH

`,k,j, although there is
only a transpose and not any complex conjugate in practice. The additional
conjugation does not change the spectral efficiency or any other performance
metric, but simplifies the notation. Since the channel response is a vector, it is
characterized by its norm and its direction in the vector space. Both are random
variables in a fading channel. The channel model characterizes their respective
distribution and statistical independence/dependence. A generic fading chan-
nel h ∈ CM is spatially uncorrelated if the channel gain ‖h‖2 and the channel

direction
h
‖h‖ are independent random variables, and the channel direction is

uniformly distributed over the unit-sphere in CM. The channel is otherwise spa-
tially correlated. The vast majority of the massive MIMO literature concentrates
on correlated Rayleigh fading channels such that

h`,k,j ∼ CN
(

0Mj , R`,k,j

)
. (2.1)
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In the case of R`,k,j = β`,k,jIMj the channel is spatially uncorrelated, where β`,k,j

refers to as the large-scale fading coefficient of the channel between the k−th MS
in the `−th cell and the j−th BS.

FIGURE 2.1: Illustration of the uplink massive MIMO transmis-
sion in the j−th cell and the `−th cell. The channel vector be-

tween the j−th BS and the k−th MS is called h`,k,j [21].

2.3 System model

In this section, a generic system model for the uplink and downlink is provided.

• Uplink data transmission: The uplink transmission in massive MIMO is
illustrated in Fig. 2.1. The received uplink signal yj ∈ CMj at the BS in the
j−th cell is modeled as

yj =
L

∑
`=1

K`

∑
k=1

√
p`,kh`,k,js`,k + wj

=
Kj

∑
k=1

√
pj,khj,k,jsj,k︸ ︷︷ ︸

desired signal

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,ih`,i,js`,i

︸ ︷︷ ︸
inter-cell interference

+ wj︸︷︷︸
noise

, (2.2)

where wj ∼ CN
(

0Mj , σ2
ULIMj

)
is independent additive receiver noise with

zero mean and variance σ2
UL and p`,k is the power transmitted from the

k−th MS in the `−th cell. The uplink signal from the k−th MS in the `−th
cell is denoted by s`,k ∈ C and has unit power, i.e., E

[
|s`,k|2

]
= 1, irre-

spective of whether it is a random payload data signal s`,k ∼ CN (0, 1) or a
deterministic pilot signal with |s`,k|2 = 1. The channels are constant within
a coherence block, while the signals and noise take new realization at ev-
ery sample. During data transmission, the BS in the j−th cell selects the
receive post-coding vector denoted, at this point, as dj,k ∈ CMj to separate
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the signal from its k−th desired MS from the interference as

dH
j,kyj =

√
pj,kdH

j,khj,k,jsj,k︸ ︷︷ ︸
desired signal

+
Kj

∑
i=1
i 6=k

√
pj,idH

j,khj,i,jsj,i

︸ ︷︷ ︸
intra-cell interference

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,idH

j,kh`,i,js`,i

︸ ︷︷ ︸
inter-cell interference

+ dH
j,kwj︸ ︷︷ ︸

noise

.

(2.3)

The selection of post-coding vectors, based on estimated channels, and the
corresponding uplink spectral efficiency bounds will be detailed in the fol-
lowing section. Note that receiver post-coding is a linear processing scheme
that is also known as linear detection.

FIGURE 2.2: Illustration of the downlink massive MIMO trans-
mission in the j−th cell and the `−th cell. The channel vector

between the j−th BS and the k−th MS is called h`,k,j [21].

• Downlink data transmission: The downlink transmission in massive MIMO
is illustrated in Fig. 2.2. The BS in the `−th cell transmits the signal

x` =
K`

∑
i=1

√
ρ`,iq`,iζ`,i, (2.4)

where ζ`,k ∼ CN (0, 1) is the downlink data signal intended for the k−th
MS in the `−th cell and ρ`,k is the signal power. This signal is assigned
to a transmit pre-coding vector q`,k ∈ CM` that determines the spatial di-
rectivity of the transmission. Note that the term ρ`,k takes into account
also the normalization at the transmitter in order to allow the unit power

constraint of the effective precoder, i.e., ρ`,k =
pDL
`,k

E
[
‖q`,k‖2

] . The received
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signal yj,k ∈ C at the k−th MS in the j−th cell is modeled as

yj,k =
L

∑
`=1

hH
j,k,`xl + wj,k

=
L

∑
`=1

K`

∑
i=1

√
ρ`,ihH

j,k,`q`,iζ`,i + wj,k

=
√

ρj,khH
j,k,jqj,kζ j,k︸ ︷︷ ︸

desired signal

+
Kj

∑
i=1
i 6=k

√
ρj,ihH

j,k,jqj,iζ j,i

︸ ︷︷ ︸
intra-cell interference

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
ρ`,ihH

j,k,`q`,iζ`,i

︸ ︷︷ ︸
inter-cell interference

+ wj,k︸︷︷︸
noise

,

(2.5)

where wj,k ∼ CN (0, σ2
DL) is independent additive receiver noise with vari-

ance σ2
DL. The channels are constant within a coherence block, while the

signals and noise take new realization at every sample. The selection of
transmit pre-coding vectors and the corresponding downlink spectral effi-
ciency bounds will be detailed in the following section.

2.4 Channel estimation

To make efficient use of the massive number of antennas, each BS needs to esti-
mate the channel responses from the MSs that are active in the current coherence
block. It is particularly important for the j−th BS to have estimates of the chan-
nels from the MSs in the j−th cell. Channel estimates from interfering MSs in
other cells can also be useful to perform interference suppression during data
transmission. Each MS transmits a pilot sequence that spans τp samples. The
pilot sequence of the k−th MS in the j−th cell is denoted by Φj,k ∈ Cτp . It is
assumed to have unit-power, so that

∥∥Φj,k
∥∥2

= 1. The signal received at the BS
in the j−th cell is denoted as Yp,j ∈ CMj×τp and can be written as

Yp,j =
Kj

∑
k=1

√
pj,khj,k,jΦ

T
j,k︸ ︷︷ ︸

desired pilots

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,ih`,i,jΦ

T
`,i

︸ ︷︷ ︸
inter-cell pilots

+Wp,j︸︷︷︸
noise

, (2.6)

where Wp,j ∈ CMj×τp is the independent additive receiver noise with indipen-
dent and identical distributed (i.i.d.) elements distributed as CN (0, σ2

UL). To
estimate the channel of a particular MS, the BS needs to know which pilot se-
quence this MS has transmitted. This is why the pilots are deterministic se-
quences and the pilot assignment is typically made when the MS connects to
the BS; for example, using a random access procedure. Suppose, for the sake
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of argument, that the j−th BS wants to estimate the channel h`,i,j from an arbi-
trary i−th MS in the `− th cell. The BS can then multiply/correlate Yp,j with
the pilot sequence Φ`,i of this MS, leading to the processed received pilot signal
yp

j,`,i ∈ CMj , given as

yp
j,`,i = Yp,jΦ

∗
`,i =

L

∑
`′=1

K`′

∑
i′=1

√
p`′,i′h`′,i′,jΦ

T
`′,i′Φ

∗
`,i + Wp,jΦ

∗
`,i . (2.7)

For the k−th MS in the BS’s own cell Eq. (2.7) can be expressed as

yp
j,j,k = Yp,jΦ

∗
j,k =

√
pj,khj,k,jΦ

T
j,kΦ∗j,k︸ ︷︷ ︸

desired pilot

+
Kj

∑
i=1
i 6=k

√
pj,ihj,i,jΦ

T
j,iΦ

∗
j,k

︸ ︷︷ ︸
intra-cell pilots

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,ih`,i,jΦ

T
`,iΦ

∗
j,k

︸ ︷︷ ︸
inter-cell pilots

+Wp,jΦ
∗
j,k︸ ︷︷ ︸

noise

.

(2.8)

The second and third terms in Eq. (2.8) represent interference and contain inner
products of the form ΦT

`,iΦ
∗
j,k between the pilot of the desired MS and the pilot

of another i−th MS in the `−th cell. If the pilot sequences of two UEs are or-
thogonal (i.e.,ΦT

`,iΦ
∗
j,k = 0), then the corresponding interference term in Eq. (2.8)

vanishes and does not affect the estimation. Ideally, all pilot sequences should
be orthogonal, but since the pilots are τp−dimensional vectors, for a given τp,
we can only find a set of at most τp mutually orthogonal sequences. The finite
length of the coherence blocks imposes the constraint τp < τc that makes it im-
possible to assign mutually orthogonal pilots to all MSs in practice. Since longer
pilots come at the price of having fewer samples for data transmission, it is non-
trivial to optimize the pilot length; however, a rule-of-thumb is that τp should
always be smaller than τc/2 [10]. A practical assumption is that the network
utilizes a set of τp mutually orthogonal pilot sequences, so that it is possible to
define the set

Pj,k = {(`, i) : Φ`,i = Φj,k, ` = 1, . . . , L, i = 1, . . . , K`}, (2.9)

of all MSs that utilize the same pilot sequence as k−th MS in the j−th cell: (`, i) ∈
Pj,k means that the i−th MS in the `−th cell uses the same pilot as k−th MS in
the j−th cell. Using the notation in Eq. (2.9), Eq. (2.8) simplifies into

yp
j,j,k =

√
pj,khj,k,j︸ ︷︷ ︸

desired pilot

+ ∑
(`,i)∈Pj,k\(j,k)

√
p`,ih`,i,j︸ ︷︷ ︸

interfering pilots

+Wp,jΦ
∗
j,k︸ ︷︷ ︸

noise

.
(2.10)
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Note that yp
j,j,k = yp

j,`,i, ∀(`, i) ∈ Pj,k since these MSs use the same pilot. We also

note that Wp,jΦ
∗
j,k ∼

(
0Mj , σ2

ULIMj

)
since the pilot sequences are deterministic

and
∥∥Φj,k

∥∥2
= 1. The processed received signal yp

j,j,k in Eq. (2.10) is a sufficient
statistic for estimating hj,k,j since there is no loss in useful information as com-
pared to using the originally received signal Yp,j [22]. One of the most common
techniques for the channel estimation in the massive MIMO literature is the min-
imum mean square error (MMSE) channel estimation. Focusing on the case of
spatially uncorrelated channel, i.e., h`,i,j ∼ CN

(
0Mj , β`,i,jIMj

)
, the MMSE esti-

mate of this channel based on the observation in Eq. (2.10) can be written as
[22]

ĥ`,i,j =

√p`,iβ`,i,j

∑
(`′,i′)∈P`,i

p`′,i′β`′,i′,j + σ2
UL

yp
j,`,i = c`,i,jy

p
j,`,i. (2.11)

The estimation error h̃`,i,j = h`,i,j − ĥ`,i,j has correlation matrix [21], [22]

C`,i,j = E
[
h̃`,i,jh̃H

`,i,j

]
= β`,i,j

(
1− p`,iβ`,i,jc`,i,j

)
IMj . (2.12)

An important property of the MMSE estimation is that h̃`,i,j and ĥ`,i,j are inde-
pendent random variables, distributed as follows [21], [22]:

ĥ`,i,j ∼ CN
(

0Mj , β`,i,jIMj − C`,i,j

)
h̃`,i,j ∼ CN

(
0Mj , C`,i,j

) . (2.13)

2.5 Channel hardening and favorable propagation

Two important properties of multiantenna channels are channel hardening and
favorable propagation. These properties are briefly detailed in the following.

• Channel hardening: It makes a fading channel behave as deterministic.
This property alleviates the need for combating small-scale fading (e.g.,
by adapting the transmit powers) and improves the downlink channel
gain estimation. A propagation channel h`,k,j provides asymptotic chan-
nel hardening if ∥∥h`,k,j

∥∥2

E
[∥∥h`,k,j

∥∥2
] → 1 almost surely as Mj → ∞. (2.14)

This definition says that the gain
∥∥h`,k,j

∥∥2 of an arbitrary fading channel
h`,k,j is close to its mean value when there are many antennas.

• Favorable propagation: It makes the directions of two MS channels asymp-
totically orthogonal. This property makes it easier for the BS to mitigate
interference between these MSs, which generally improves the spectral ef-
ficiency and makes it sufficient to use linear post-coding and pre-coding.
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The pair of channels h`,i,j and hj,k,j to the j−th BS provide asymptotically
favorable propagation if

hH
`,i,jhj,k,j√

E
[∥∥h`,i,j

∥∥2
]

E
[∥∥hj,k,j

∥∥2
] → 0 almost surely as Mj → ∞. (2.15)

This definition says that the inner product of the normalized channels

h`,i,j√
E
[∥∥h`,i,j

∥∥2
] and

hj,k,j√
E
[∥∥hj,k,j

∥∥2
]

goes asymptotically to zero. Since the norms of the channels grow with
Mj, favorable propagation does not imply that the inner product of h`,i,j

and hj,k,j goes to zero; that is, the channel directions become orthogonal,
but not the channel responses.

2.6 Spectral efficiency bounds for massive MIMO networks

In this section some spectral efficiency bounds for uplink and downlink are pro-
vided; these bounds have been proposed in the recent literature on the massive
MIMO networks in order to evaluate their performance behaviour.
In order to clarify the need of spectral efficiency bounds evaluation, a simple
exaplanation is provided in the following. Restricting the attention to linear
beamforming (for downlink transmission), single data stream per MS, and in-
dependent channel coding of the MS data streams, a generic channel use of the
underlying channel model is described by the Gaussian interference channel:

yk = gk,ksk +
K

∑
i=1
i 6=k

gk,isi + wk, k = 1, . . . , K , (2.16)

where yk is the channel output observed by the k−th MS decoder, sk is the coded
information bearing symbol for the k−th MS (useful signal), wk ∼ CN (0, σ2

w)

is additive Gaussian noise, and {gk,i} are the effective channel coefficients result-
ing from the inner products of the transmit beamforming vectors with the MSs’
channel vectors.
In general, when the coefficients {gk,i} are not perfectly known to the k−th MS
receiver, for example because of imperfect CSI given by the channel estimation
reported in Section 2.4, it is not clear what is “signal” and what is “interference”
in Eq. (2.16). In particular, the intuitive notion of Signal-to-Interference plus
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Noise Ratio (SINR), given by

SINRk =
|gk,k|2

K

∑
i=1
i 6=k

|gk,i|2 + σ2
w

(2.17)

is in general not rigorously related to a corresponding notion of information
theoretic achievable rate. Note that, Eq. (2.17) is rigorously related to a corre-
sponding notion of information theoretic achievable rate in the case of perfect
CSI.
In the following τd denotes the number of downlink data samples per coherence
block, and consequently τu = τc − τp − τd is the number of uplink data samples
per coherence block.

2.6.1 Uplink spectral efficiency bounds

Focusing on the uplink spectral efficiency, in the following one upper bound and
two lower bounds are derived.

• The upper bound for the uplink spectral efficiency is understood in the
max-min sense, where the max is over the coding/decoding strategy of
the k−th MS and the min is over all input distributions of the other MSs
in the system. Considering Eq. (2.3), the spectral efficiency, measured in
bit/s/Hz, is upper-bounded by [23]

SEub
j,k,UL =

τu

τc
E


log2


1 +

pj,k|dH
j,khj,k,j|2

L

∑
`=1

K`

∑
i=1

(i,`) 6=(j,k)

p`,i|dH
j,kh`,i,j|2 + σ2

UL
∥∥dj,k

∥∥2




,

(2.18)
where the expectation is with respect to the channel realizations and the
pre-log factor τd

τc
in Eq. (2.18) is the fraction of samples per coherence block

that are used for uplink data. An important observation here and in the
following is that in evaluating these bounds it is assumed that the decoder
of the generic MS treats the multiuser interference as additional additive
noise, i.e., the spectral efficiency is achieved by Treating Interference as Noise
(TIN).
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• The first spectral efficiency lower bound in the uplink is obtained rewriting
Eq. (2.3) as

dH
j,kyj =

√
pj,kdH

j,kĥj,k,jsj,k︸ ︷︷ ︸
desired signal over estimated channel

+
√

pj,kdH
j,kh̃j,k,jsj,k︸ ︷︷ ︸

desired signal over “unknown” channel

+
Kj

∑
i=1
i 6=k

√
pj,idH

j,khj,i,jsj,i

︸ ︷︷ ︸
intra-cell interference

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,idH

j,kh`,i,js`,i

︸ ︷︷ ︸
inter-cell interference

+ dH
j,kwj︸ ︷︷ ︸

noise

.

(2.19)
The key difference in Eq. (2.19) is that the desired signal term has been
divided into two parts: one that is received over the known estimated
channel ĥj,k,j from k−th MS in the j−th cell and one that is received over
the unknown estimation error h̃j,k,j of the channel. The former part can be
utilized straight away for signal detection, while the latter part is less use-
ful since only the distribution of the estimation error is known. If MMSE
channel estimation detailed in Section 2.4 is used, the uplink spectral effi-
ciency of the k−th MS in the j−th cell is lower bounded by

SElb1
j,k,UL =

τu

τc
E
[
log2

(
1 + SINRlb1

j,k,UL

)]
, (2.20)

with

SINRlb1
j,k,UL =

pj,k|dH
j,kĥj,k,j|2

L

∑
`=1

K`

∑
i=1

(i,`) 6=(j,k)

p`,i|dH
j,kĥ`,i,j|2 + dH

j,k

(
L

∑
`=1

K`

∑
i=1

p`,iC`,i,j + σ2
ULIMj

)
dj,k

(2.21)
and where the expectation is with respect to the channel estimates. The
spectral efficiency in Eq. (2.20) holds under the assumption that the MMSE
estimator is used for channel estimation and it can be computed by Monte
Carlo simulations for any post-coding scheme, by generating many real-
izations of the instantaneous SINR in Eq. (2.21) [21].

• The second lower bound provided here is less tight but commonly used
in research papers since it leads to closed-form expressions under the as-
sumption of MMSE channel estimation and maximum ratio (MR) post-
coding. The key idea behind this approach is to utilize the channel esti-
mates only for computing the receive post-coding vectors, while this side
information is not exploited in the signal detection. This simplification
makes sense when there is substantial channel hardening. More precisely,
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the receive combined signal in Eq. (2.3) is rewritten as

dH
j,kyj =

√
pj,kE

[
dH

j,khj,k,j

]
sj,k︸ ︷︷ ︸

desired signal over average channel

+
√

pj,k

(
dH

j,khj,k,j −E
[
dH

j,khj,k,j

])
sj,k︸ ︷︷ ︸

desired signal over “unknown” channel

+
Kj

∑
i=1
i 6=k

√
pj,idH

j,khj,i,jsj,i

︸ ︷︷ ︸
intra-cell interference

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
p`,idH

j,kh`,i,js`,i

︸ ︷︷ ︸
inter-cell interference

+ dH
j,kwj︸ ︷︷ ︸

noise

.

(2.22)
by adding and subtracting √pj,kE

[
dH

j,khj,k,j

]
sj,k. Only the part of the de-

sired signal received over the average precoded channel E
[
dH

j,khj,k, j
]

is
treated as the true desired signal. The part of sj,k received over the devia-

tion from the mean value, dH
j,khj,k,j −E

[
dH

j,khj,k,j

]
, has zero mean and can

thus be treated as an uncorrelated noise signal in the detection. The alter-
native capacity bound is referred to as the use-and-then-forget (UatF) bound
since the channel estimates are used for post-coding and then effectively
“forgotten” before the signal detection [24]. The uplink spectral efficiency
of the k−th MS in the j−th cell is lower bounded by

SElb2
j,k,UL =

τu

τc
log2

(
1 + SINRlb2

j,k,UL

)
, (2.23)

with

SINRlb2
j,k,UL =

pj,k

∣∣∣E [dH
j,khj,k,j

]∣∣∣2
L

∑
`=1

K`

∑
i=1

p`,iE

[∣∣∣dH
j,kh`,i,j

∣∣∣2]− pj,k

∣∣∣E [dH
j,khj,k,j

]∣∣∣2 + σ2
ULE

[∥∥dj,k
∥∥2
] ,

(2.24)
where the expectations are with respect to the channel realizations. How-
ever, it does not require the use of MMSE channel estimation, but can be
applied along with any channel estimator and any post-coding scheme. In
fact, it can be applied with any channel distributions or even measured
channels. Each of the expectations in Eq. (2.24) can be computed sep-
arately by means of Monte Carlo simulation. For MR post-coding, i.e.,
dj,k = ĥj,k,j, these expectations can be obtained in closed form as follows.

1) Evaluation of E
[
ĥH

j,k,jhj,k,j

]
: Using the channel estimation procedure

detailed in Section 2.4 we obtain

E
[
ĥH

j,k,jhj,k,j

]
= E

[
ĥH

j,k,j

(
ĥj,k,j + h̃j,k,j

)]
= E

[
ĥH

j,k,jĥj,k,j

]
=
√pj,kβ j,k,jcj,k,j Mj .

(2.25)
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2) Evaluation of E
[
ĥH

j,k,jh`,i,j

]
: Using Eqs. (2.10) and (2.11) we can write

E
[
ĥH

j,k,jh`,i,j

]
= E

cj,k,j

 ∑
(`′,i′)∈Pj,k

√
p`′,i′h`′,i′,j + w̃j,k

H

h`,i,j

 ,

(2.26)
where w̃j,k = Wp,jΦ

∗
j,k. Since the variance of a sum of independent

random variables is equal to the sum of the variances, using the rela-
tion

E

[∣∣∣hH
`,i,jh`,i,j

∣∣∣2] = β2
`,i,j Mj(Mj + 1) , (2.27)

and the definition in Eq. (2.11) we obtain

E
[
ĥH

j,k,jh`,i,j

]
= pj,k I(j,k)

(`,i) M2
j
(
cj,k,jβ`,i,j

)2
+
√pj,kcj,k,jβ`,i,jβ j,k,j Mj ,

(2.28)
with

I(j,k)
(`,i) =

{
1 if (`, i) ∈ Pj,k

0 otherwise
. (2.29)

3) Evaluation of E
[
ĥH

j,k,jĥ`,i,j

]
: Similarly to Eq. (2.25) we have

E
[
ĥH

j,k,jĥj,k,j

]
=
√pj,kβ j,k,jcj,k,j Mj . (2.30)

Substituting Eqs. (2.25), (2.28) and (2.30) in Eq. (2.24) we obtain

SINRlb2
j,k,UL =

(
pj,kβ j,k,j

)2 cj,k,j Mj

L

∑
`=1

K`

∑
i=1

√
pj,k p`,iβ`,i,jβ j,k,j︸ ︷︷ ︸

non-coherent interference

+ ∑
(`,i)∈Pj,k\(j,k)

(
p`,iβ`,i,j

)2 cj,k,j Mj︸ ︷︷ ︸
coherent interference

+σ2
UL
√pj,kβ j,k,j

.

(2.31)
The closed-form spectral efficiency expression in Eq. (2.31) provides im-
portant insights into the basic behaviors of massive MIMO. The term at
the numerator involves the transmit power multiplied with the term cj,k,j,
defined in Eq. (2.11). Hence, the estimation quality determines the signal
strength and it is reduced by pilot contamination. At the denominator, the
term referred to as non-coherent interference does not increase linearly with
Mj, so that, when the number of antennas at the BS goes to infinity, it van-
ishes with respect to the term denoted as coherent interference. This term
only involves the MSs in Pj,k\(j, k), which are those using the same pilots
as the desired MS and it is a consequence of the pilot contamination.
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TABLE 2.1: Simulation parameters

Parameter Value
Carrier frequency 1.9 GHz
Bandwidth 20 MHz
Noise figure (uplink and downlink) 9 dB
BS antenna height 15 m
MS antenna height 1.65 m
MS horizontal distribution uniform
Channel estimation MMSE detailed in Section 2.4
Thermal noise −174 dBm/Hz spectral density

Power control
DL: no power control
UL: no power control
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FIGURE 2.3: Average sum spectral efficiency in uplink versus the
transmit power at the MSs of a system with L = 4 cells, Mj =

100 ∀ j = 1, . . . , L: comparison between the three bounds.

In Fig. 2.3 the average sum spectral efficiencies, measured in bit/s/Hz, are re-
ported, using the three bounds for the uplink spectral efficiency detailed in this
section, for two different values of number of MSs per cell. In this figure, a sys-
tem with 4 cells is considered, i.e., L = 4, the number of antennas at the BS is the
same for all the cells, i.e., Mj = 100 ∀ j = 1, . . . , L and the number of MSs per
cell is also the same for all the cells, i.e., Kj = K ∀ j = 1, . . . , L. The simulation
parameters are reported in Table 2.1. In the figure the bound in Eq. (2.18) is
denoted as “ub”, the bound in Eq. (2.20) as “lb1” and the bound in Eq. (2.23)
as “lb2”. Inspectin the figure it is possible to note that the lower bound “lb1” is
less tight than the bound “lb2”, since the channel estimates are not utilized in
the signal detection. The bound “lb2” yields a significantly better behavior for a
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larger range of transmit power, however, for large values of transmit power the
self-interference term becomes relevant and the curve flattens out and separates
from the “ub”. Increasing the number of MSs in the uplink it is possible to note
that the performance of the system grows, so that the availability of multiple
antennas at the BS can reduce the interference for the two values of number of
MSs here considered.

2.6.2 Downlink spectral efficiency bounds

Focusing on the downlink spectral efficiency, in the following one upper bound
and two lower bounds are explained.

• As in the case of uplink, the upper bound for the downlink spectral ef-
ficiency is understood in the max-min sense, where the max is over the
coding/decoding strategy of the k−th MS and the min is over all input
distributions of the other MSs in the system. Considering Eq. (2.5), the
spectral efficiency is upper-bounded by [23]

SEub
j,k,DL =

τd

τc
E


log2


1 +

ρj,k

∣∣∣hH
j,k,jqj,k

∣∣∣2
L

∑
`=1

K`

∑
i=1

(i,`) 6=(j,k)

ρ`,i

∣∣∣hH
j,k,`q`,i

∣∣∣2 + σ2
DL




, (2.32)

where the expectation is with respect to the channel realizations and the
pre-log factor τd

τc
in Eq. (2.32) is the fraction of samples per coherence block

that are used for downlink data.

• The first spectral efficiency lower bound in the downlink is obtained rewrit-
ing Eq. (2.5) as

yj,k =
√

ρj,kE
[
hH

j,k,jqj,k

]
ζ j,k︸ ︷︷ ︸

desired signal over average channel

+
√

ρj,k

(
hH

j,k,jqj,k −E
[
hH

j,k,jqj,k

])
ζ j,k︸ ︷︷ ︸

desired signal over “unknown” channel

+
Kj

∑
i=1
i 6=k

√
ρj,ihH

j,k,jqj,iζ j,i

︸ ︷︷ ︸
intra-cell interference

+
L

∑
`=1
` 6=j

K`

∑
i=1

√
ρ`,ihH

j,k,`q`,iζ`,i

︸ ︷︷ ︸
inter-cell interference

+ wj,k︸︷︷︸
noise

.

(2.33)
The first term in Eq. (2.33) is the desired signal received over the determin-
istic average precoded channel E

[
hH

j,k,jqj,k

]
, while the remaining terms

are random variables with realizations that are unknown to the MS. An
achievable spectral efficiency can be computed by treating these terms as
noise in the signal detection. This bound thus obtained is known as the
hardening bound and it holds for any choice of pre-coding vectors and chan-
nel estimation schemes [21]. The downlink spectral efficiency of the k−th
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MS in the j−th cell is lower bounded by

SElb1
j,k,DL =

τd

τc
log2

(
1 + SINRlb1

j,k,DL

)
, (2.34)

with

SINRlb1
j,k,DL =

ρj,k

∣∣∣E [qH
j,khj,k,j

]∣∣∣2
L

∑
`=1

K`

∑
i=1

ρ`,iE

[∣∣∣qH
`,ihj,k,`

∣∣∣2]− ρj,k

∣∣∣E [qH
j,khj,k,j

]∣∣∣2 + σ2
DL

. (2.35)

The term in Eq. (2.35) is a deterministic scalar and the expression contains
several expectations over the random channel realizations that can be com-
puted separately by means of Monte Carlo simulation. If channel matched
(CM) pre-coding with qj,k = ĥj,k,j is used, based on the MMSE estimator
detailed in Section 2.4, these expectations can be computed in closed form
as follows.

1) Evaluation of E
[
ĥH

j,k,jhj,k,j

]
: Using the channel estimation procedure

detailed in Section 2.4 we obtain

E
[
ĥH

j,k,jhj,k,j

]
= E

[
ĥH

j,k,j

(
ĥj,k,j + h̃j,k,j

)]
= E

[
ĥH

j,k,jĥj,k,j

]
=
√pj,kβ j,k,jcj,k,j Mj .

(2.36)

2) Evaluation of E
[
ĥH
`,i,`hj,k,`

]
: Using Eqs. (2.10) and (2.11) we can write

E
[
ĥH
`,i,`hj,k,`

]
= E

c`,i,`

 ∑
(`′,i′)∈P`,i

√
p`′,i′h`′,i′,` + w̃`,k

H

hj,k,`

 .

(2.37)
Since the variance of a sum of independent random variables is equal
to the sum of the variances, using the relation

E

[∣∣∣hH
j,k,`hj,k,`

∣∣∣2] = β2
j,k,`M`(M` + 1) , (2.38)

and the definition in Eq. (2.11) we obtain

E
[
ĥH
`,i,`h

`
j,k

]
= pj,k I(j,k)

(`,i) M2
`

(
c`,i,`β j,k,`

)2
+
√p`,ic`,i,`β`,i,`β j,k,`M` ,

(2.39)

where I(j,k)
(`,i) is defined as in Eq. 2.29. Substituting Eqs. (2.36) and (2.39) in

Eq. (2.35) we obtain
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SINRlb1
j,k,DL =

ρj,k pj,kβ2
j,k,jcj,k,j M2

j

L

∑
`=1

K`

∑
i=1

ρ`,i
√

p`,iβ j,k,`c`,i,`β`,i,`M`︸ ︷︷ ︸
non-coherent interference

+ ∑
(`,i)∈Pj,k\(j,k)

ρ`,i pj,kβ j,k,`β`,i,`c`,i,`M2
`︸ ︷︷ ︸

coherent interference

+σ2
DL

.

(2.40)
The term at the numerator in Eq. (2.40) increases quadratically with Mj,
this is the array gain from the pre-coding and his term involves cj,k,j that is
related to the estimation quality. The first term in the numerator scales lin-
early with M`, so that it vanishes with respect to the second term when the
number of antennas at the BSs grows. The second term in the denomina-
tor is the additional coherent interference that scales quadratically with M`

and originates from the signals to MSs that share the same pilot; that is,
pilot contamination also affects the downlink. In this case, the BS uses pre-
coding to direct the signals towards the intended receivers, but partially
also direct them towards the MSs that interfered with the pilot transmis-
sion.

• The second lower bound for the spectral efficiency in uplink is given by
[23]

SElb2
j,k,DL = SEub

j,k,DL −
τd

τ2
c

L

∑
`=1

K`

∑
i=1

log2

(
1 +

τc

σ2
DL

ρ`,iVar
[
hH

j,k,`q`,i

])
. (2.41)

The expectations over the random channel realizations in Eq. (2.41) can
be computed separately by means of Monte Carlo simulation. If CM pre-
coding with qj,k = ĥj,k,j is used, based on the MMSE estimator detailed in
Section 2.4, the variance in the second term can be computed as follows:

Var
[
hH

j,k,`ĥ`,i,`

]
(a)
= E

[∣∣∣hH
j,k,`ĥ`,i,`

∣∣∣2]
(b)
= E


∣∣∣∣∣∣hH

j,k,`c`,i,`

√p`,ih`,i,` + ∑
(`′,i′)∈P`,i\(`,i)

√
p`′,i′h`′,i′,` + w̃`,i

∣∣∣∣∣∣
2
 ,

(2.42)
where (a) follows from the fact that both the channel and its MMSE esti-
mate are zero mean, and (b) is obtained substituting Eqs. (2.10) and (2.11)
in Eq. (2.42). Now, the two cases (j, k) ∈ P`,i and (j, k) /∈ P`,i are analized
separately. Starting from the first case and using the fact that the variance
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of a sum of independent random variables is equal to the sum of the vari-
ances Eq. (2.42) is written as

Var
[
hH

j,k,`ĥ
`
`,i

]
= c2
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(c)
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+c2
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DLc2
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(d)
= c2

`,i,`pj,kβ2
j,k,`M2

` + c`,i,`β j,k,`β`,i,`
√p`,i M` ,

(2.43)

where (c) follows from the independence between different channels and
channel and noise and from Eq. 2.38. The equality (d) follows from defi-
nition of c`,i,` in Eq. (2.11).

Considering now the case (j, k) /∈ P`,i Eq. (2.42) is written, using similar
arguments as in Eq. (2.43), as

Var
[
hH

j,k,`ĥ`,i,`

]
= c2

`,i,` ∑
(`′,i′)∈P`,i)

p`′,i′E
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j,k,`h`′,i′,`

∣∣∣2]
+c2

`,i,`E

[∣∣∣hH
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`,i,` ∑
(`′,i′)∈P`,i

p`′,i′β j,k,`β`′,i′,`M` + σ2
DLc2

`,i,`β j,k,`M`

= c`,i,`β j,k,`β`,i,`
√p`,i M` .

(2.44)

Using Eqs. (2.43) and (2.44), Eq. (2.42) can be rewritten as

Var
[
hH

j,k,`ĥ`,i,`

]
= c`,i,`β j,k,`β`,i,`

√
p`,i M` + I(`,i)

(j,k)c
2
`,i,`pj,kβ2

j,k,`M2
` , (2.45)

where I(`,i)
(j,k) is defined as in Eq. (2.29).
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FIGURE 2.4: Average sum spectral efficiency in downlink versus
the transmit power at the MSs of a system with L = 4 cells, Mj =

100 ∀ j = 1, . . . , L: comparison between the three bounds.

In Fig. 2.4 the average sum spectral efficiencies, measured in bit/s/Hz, are re-
ported, using the three bounds for the downlink spectral efficiency detailed in
this section, for two different values of number of MSs per cell. In this figure, a
system with 4 cells is considered, i.e., L = 4, the number of antennas at the BS is
the same for all the cells, i.e., Mj = 100 ∀ j = 1, . . . , L and the number of MSs per
cell is also the same for all the cells, i.e., Kj = K ∀ j = 1, . . . , L. The simulation
parameters are reported in Table 2.1. In the figure the bound in Eq. (2.18) is
denoted as “ub”, the bound in Eq. (2.20) as “lb1” and the bound in Eq. (2.23) as
“lb2”. Inspectin the figure it is possible to note that, as in the uplink, the lower
bound “lb1” is less tight than the bound “lb2”, since the channel estimates are
not utilized in the signal detection. The bound “lb2” yields a significantly better
behavior for a larger range of transmit power, expecially for K = 10, however,
for high values of transmit power the self-interference term become relevant and
the curve flattens out and separates from the “ub”.
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Chapter 3

Massive MIMO at mm-Wave and
at µ-Wave frequencies

Referred article published in the ZTE Communications-Special Topic: 5G New Radio
(NR): Standard and Technology 2017.

3.1 Introduction

Future wireless networks are expected to provide 1000x improvement on the
supported data rate, as compared to current LTE networks. Enhanced mobile
broadband (eMBB) is one of the key use-cases for the development of the new
standard 5G New Radio for the next generation of mobile wireless networks. As
explained in Chapter 1, three are the main factors that will permit implement-
ing eMBB services and realizing the Gbit/s mobile wireless experience[1]: (a)
the reduction in the size of the radio-cells, so that a larger data-rate density can
be achieved; (b) the use of large-scale antenna arrays at the BSs, i.e., MIMO [25],
so that several users can be multiplexed in the same time-frequency resource
slot through MU-MIMO techniques; and (c) the use of carrier frequencies in the
range 10–100 GHz, a.k.a. mm-Waves2 [26], so that larger bandwidths become
available. The factor (a), i.e., the densification of the network, is actually a trend
that can be observed for some decades, in the sense that the size of the radio
cells has been progressively reduced over time from one generation of cellular
networks to the next one. Differently, factor (b) can be seen as a sort of 4.5G tech-
nology, in the sense that the latest Third Generation Partnership Project (3GPP)
LTE releases already include the possibility to equip BS with antenna arrays
of up to 64 elements. This trend will certainly continue in the 5G New Radio
(5G-NR) standard, since the potentialities of massive MIMO are currently be-
ing tested worldwide in a number of real-world experiments (for instance, [27]
and [28]). The use of mm-Waves, on the contrary, is a more recent technology, at
least as far as wireless cellular applications are concerned, but mm-Waves can be
certainly classified as a technology of the next generations of cellular networks.

2Even though mm-Waves is a term that historically refers to the range 30-300 GHz, in the
recent literature about future wireless networks the term is used to refer to frequency above-6
GHz, in contrapposition to the usual cellular frequencies located below 6 GHz.
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Focusing on the massive MIMO technology, most of the research and experi-
mental work has mainly considered its use at conventional cellular frequencies
(e.g. sub-6 GHz). Such a range of frequencies is denoted here as µ-Wave, to
contrast them with the above-6 GHz frequencies that it is denoted as mm-Wave.
Only recently, the combination of the massive MIMO concept with the use of
mm-Wave frequency bands has started being considered [19], [29]. As a matter
of fact, the channel propagation mechanisms at µ-Wave frequencies are com-
pletely different from those at mm-Waves. The propagation conditions are less
favorable in mm-Wave bands, making the beamforming gain offered by massive
MIMO an inescapable feature of such systems. There are, however, fundamen-
tal differences between how massive MIMO technology can be designed, imple-
mented, and exploited in µ-Wave and mm-Wave bands [30]. For instance, the
rich-scattering environment at µ-Wave in urban environments is observed [31],
thus implying that the MIMO channel is customarily modeled as the product
of a scalar constant when the shadowing effects and path loss times a matrix
with i.i.d. entries are taken into account. At mm-Waves, instead, propagation
is mainly based on Line-of-Sight (LOS) propagation and on one-hop reflections,
and blockage phenomena are more frequent. To capture these mechanisms, a
finite-rank clustered channel model is usually employed [32]–[34]. This chapter
of the thesis compares massive MIMO systems at µ-Waves with massive MIMO
systems at mm-Waves. It is observed that these two different channel models
have key implications on the achievable performance, on the multiplexing ca-
pabilities of the channels themselves, on the beamforming strategies that can be
employed, on the transceiver algorithms and on the adopted channel estimation
procedures. Six key differences between massive MIMO systems at µ-Waves
and massive MIMO systems at mm-Waves are thus identified and critically dis-
cussed.
The remainder of this chapter is organized as follows. Section 3.2 describes
the considered transceiver model and the massive MIMO channel models at µ-
Waves and at mm-Wave frequencies. Sections 3.3-3.8 describe six key differences
between the massive MIMO channels at µ-Wave and at mm-Wave frequencies;
numerical results are also shown here in order to provide experimental evidence
of the theoretical discussion.

3.2 System and channel model

An understanding of the electromagnetic propagation is crucial when consider-
ing massive MIMO systems and frequencies up to mm-Wave bands. The chan-
nels behave fundamentally different from what it is used to in cellular networks,
which exposes weaknesses in the channel modeling simplifications convention-
ally made. This section briefly illustrates the considered transceiver architecture
and reviews the main characteristics of the MIMO wireless channel at µ-Wave
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FIGURE 3.1: The considered transceiver model.

and mm-Wave carrier frequencies. In this chapter of the thesis it is considered
a MIMO wireless link with NT antennas at the transmitter and NR antennas at
the receiver. The distance between the transmitter and receiver is denoted by d,
whereas the number of transmitted parallel data streams (i.e., the multiplexing
order) is denoted by M. The considered transceiver model is shown in Fig. 3.1.

3.2.1 µ-Wave channel model

Radio channels below at µ-Waves have been widely studied for single-antenna
and small-scale MIMO systems. The propagation depends on path-loss and
shadowing, called large-scale fading, and multi-path propagation, resulting in
small-scale fading. Assuming frequency-flat fading (i.e., either multipath may
be neglected or it is nulled through the use of OFDM modulation), at µ-Waves
the propagation channel is customarily modelled through an (NR×NT)−dimensional
matrix, whose (i, j)−th entry,

(
Hµ

)
(i,j), has the following structure[4]

(
Hµ

)
(i,j) =

√
βgi,j , (3.1)

where gi,j represents the small-scale (fast) fading between the i−th receive an-
tenna and the j−th transmit antenna, and β represents the (slow) large-scale fad-
ing (shadowing) and the path-loss between the transmitter and the receiver. In a
rich scattering environment, the coefficients gi,j , i = 1, . . . , NR , j = 1, . . . , NT are
i.i.d. CN (0, 1) random variables. The factor β in Eq. (3.1) is assumed constant
across the transmit and receive antennas (i.e., it does not depend on the indices
i, j ), and is usually expressed as:

β = 10
PL
10 10

σshz
10 , (3.2)

where PL represents the path loss (expressed in dB) and 10
σshz

10 represents the
shadow fading with standard deviation σsh, while z ∼ N (0, 1). With regard
to the path loss PL, several models have been derived over the years, based on
theoretical models and/or on empirical heuristics. According to the popular
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three-slope model [35], [36], the path loss in logarithmic units is given by:

PL =


−L− 35 log10 (d) , if d > d1

−L− 10 log10

(
d1.5

1 d2) , if d0 < d ≤ d1

−L− 10 log10

(
d1.5

1 d2
0
)

, if d < d0

, (3.3)

where d0 and d1 are the breakpoint distances of the three slope path loss model,

L = 46.3 + 33.9 log10 f − 13.82 log10 hT−[
1.11 log10 f − 0.7

]
hR + 1.56 log10 f − 0.8,

(3.4)

f is the carrier frequency in MHz and hT and hR denote the transmitter and
receiver antenna heights, respectively. Given the fact that the small-scale fading
contribution to the entries of matrix Hµ are i.i.d random variates, the channel
matrix has full-rank with probability 1, and its rank is equal to the minimum
value between NT and NR.

3.2.2 mm-Wave channel model

The measuring and modeling of mm-Wave channels have received considerable
attention, leading to a solid understanding of how these channels differ from µ-
Wave channels [37]. At mm-Wave frequencies, propagation mechanisms are dif-
ferent from those at µ-Waves. Indeed, path loss is much larger, while diffraction
effects are practically negligible, thus implying that the typical range in cellular
environments is usually not larger than 100 m, and the non-LOS component is
mainly based on reflections. Moreover, signal blockages, due to the presence of
macroscopic obstacles between the transmitter and the receiver, are much more
frequent than those at µ-Wave frequencies. In order to catch these peculiarities,
general consensus has been reached on the so-called clustered channel model
[32], [38]–[41]. This model is based on the assumption that the propagation en-
vironment is made of Ncl scattering clusters, each of which contributes with Nray

propagation paths, plus a possibly present LOS component. Apart from the LOS
component, the transmitter and the receiver are linked through single reflections
on the Ncl scattering clusters.
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FIGURE 3.2: The considered reference scenario at mm-Wave fre-
quencies.

The considered reference scenario for the clustered channel model at mm-Wave
frequencies is reported in Fig. 3.2. Assuming again frequency-flat fading and fo-
cusing on a bi-dimensional model for the sake of simplicity, the baseband equiv-
alent of the propagation channel is now represented by an (NR×NT)−dimensional
matrix expressed as:

H = γ
Ncl

∑
i=1

Nray

∑
`=1

αi,`

√
L(ri,`)ar(φ

r
i,`)a

H
t (φ

t
i,`) + HLOS . (3.5)

In the above equation, neglecting for the moment HLOS, to be specified later,
φr

i,l and φt
i,l are the azimuth angles of arrival and departure of the `−th ray in

the i−th scattering cluster, respectively. The quantities αi,` and L(ri,`) are the
complex path gain and the path loss associated to the (i, `)-th propagation path
(whose length is denoted by ri,`), respectively. Following [33] the attenuation
L(ri,`) of the (i, `)−th path is written in logarithmic units as

L(ri,`) = −20 log10

(
4π

λ

)
− 10n

[
1− b +

bc
λ f0

]
log10 ri,` − Xσ , (3.6)

with n the path loss exponent, Xσ the zero-mean, σ2-variance Gaussian-distributed
shadow fading term in logarithmic units, b a system parameter, c is the speed
of light, and f0 a fixed reference frequency, the centroid of all the frequencies
represented by the path loss model. The values for all these parameters for each
use-case scenario discussed in [33] (Urban Microcellular (UMi) Open-Square,
UMi Street-Canyon, Indoor Hotspot (InH) Office, and InH Shopping Mall) are
reported in Table 3.1.
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TABLE 3.1: Parameters for Path Loss Model [33]

Scenario Model Parameters
UMi Street Canyon LOS n = 1.98 , σ = 3.1 dB , b = 0

UMi Street Canyon NLOS n = 3.19 , σ = 8.2 dB , b = 0
UMi Open Square LOS n = 1.85 , σ = 4.2 dB , b = 0

UMi Open Square NLOS n = 2.89 , σ = 7.1 dB , b = 0
InH Indoor Office LOS n = 1.73 , σ = 3.02 dB , b = 0

InH Indoor Office NLOS n = 3.19 , σ = 8.29 dB
b = 0.06 , f0 = 24.2 GHz

InH Shopping Mall LOS n = 1.73 , σ = 2.01 dB , b = 0
InH Shopping Mall NLOS n = 2.59 , σ = 7.40 dB

b = 0.01 , f0 = 39.5 GHz

The complex gain α(i,`) ∼ CN
(
0, σ2

αi

)
, with σ2

αi
= 1 [38]. Factors ar(φr

i,`) and
at(φt

i,`) represent the normalized receive and transmit array response vectors
evaluated at the corresponding angles of arrival and departure; for an uniform
linear array (ULA) with half-wavelength inter-element spacing

at(φ
t
i,`) =

1√
NT

[
1, e−j2π sin(φt

i,`), . . . , e−j2π(NT−1) sin(φt
i,`)
]T

, (3.7)

and a similar expression can be also given for ar(φr
i,`). Finally,

γ =

√√√√√√
NRNT

Ncl

∑
i=1

Nray,i

(3.8)

is a normalization factor ensuring that the received signal power scales linearly
with the product NRNT. Regarding the LOS component HLOS in Eq. (3.5) the
arrival and departure angles corresponding to the LOS link are denoted by φr

LOS,
φt

LOS the LOS component is written as

HLOS = ILOS(d)
√

NRNTejθ
√

L(d)ar(φ
r
LOS, θr

LOS)a
H
t (φ

t
LOS, θt

LOS). (3.9)

In the above equation, η ∼ U (0, 2π), while ILOS(d) is a random variable that is
1 if a LOS link exists between transmitter and receiver and 0 otherwise. For the
LOS probability the models in [33] is here assumed, that distinguishes between
UMi and InH case. For the UMi scenarios the d1/d2 model is considered, with
d1 = 20 and d2 = 39:

pUMi(d) = min
(

d1

d
, 1
)(

1− e−
d

d2

)
+ e−

d
d2 , (3.10)
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and or the InH scenarios it is assumed:

pInH(d) =


1 d ≤ 1.2,

e−(
d−1.2

4.7 ) 1.2 < d ≤ 6.5,

0.32e−(
d−6.5
32.6 ) d ≥ 6.5.

(3.11)

A detailed description of all the parameters needed for the generation of sample
realizations for the channel model in Eq. (3.5) is reported in [32]. Comparing
the channel model in Eq. (3.5) for mm-Wave frequencies with the one in Eq.
(3.1) for µ-Wave frequencies, it is immediately evident that the channel in Eq.
(3.5) is a parametric channel model whose rank is tied to the number of clus-
ters and reflectors contributing to the transmitter-receiver link. The next section
will provide an accurate description of the implications that these two radically
different channel models have on the architecture and on the attainable perfor-
mance of massive MIMO multiuser wireless systems operating at µ-Wave and
at mm-Wave frequencies.

3.3 Massive MIMO and doubly massive MIMO

The idea of a large scale antenna array was originally launched by Marzetta
in his pioneering paper [4] with reference to BSs. The paper showed that in the
limit of a large number of BS antennas small-scale fading effects vanish by virtue
of channel hardening, and that channel vectors from the BS to the users tend
to become orthogonal; consequently, plain CM beamforming at the BS permits
serving several users on the same time-frequency resource slot with (ideally) no
interference, and the only left impairment is imperfect channel estimates due to
the fact that orthogonal pilots are limited and they must be re-used throughout
the network (this is the so-called pilot contamination effect, discussed in detail in
the Chapter 2 of the thesis). Reference [4] considered a system where MSs were
equipped with just one antenna. Further studies have extended the massive
MIMO idea at µ-Wave frequencies to the case in which the MSs have multiple
antennas, but this number is obviously limited to few units. Indeed, at µ-Wave
frequencies the wavelength is in the order of several centimeters, and it is thus
difficult to pack many antennas on small-sized user devices. At µ-Waves, thus,
massive MIMO just refers to BSs. Things are instead different at mm-Waves,
wherein multiple antennas are necessary first and foremost to compensate for
the increased path loss with respect to conventional sub-6 GHz frequencies.
Recalling the Friis transmission equation, the smaller wavelength λ directly in-
creases the path-loss proportionally to λ−2. This is due to the use of fixed-gain
antennas whose effective area is proportional to λ2. Hence, it can be overcome
by using fixed-area antennas, which become increasingly directional with a gain
proportional to λ−2. The feasibility of communicating at a high rate in LOS, ben-
efiting from the wide available bandwidth, also over long distances has been
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exploited using high-gain directional antennas. Instead of deploying a huge ar-
ray at one side of the link, the same signal-to noise ratio (SNR) can be achieved
by deploying substantially smaller arrays at both sides. The beamforming gains
are multiplied together, so instead of having 1000 BS antennas to serve single-
antenna MSs, we can have 100 BS antennas and 10 MS antennas. This also opens
the door to explore systems with massive arrays at both sides. This considera-
tion leads to the concept of doubly massive MIMO system [29], [42], which is de-
fined as a wireless communication system where the number of antennas grows
large at both the transmitter and the receiver.
The douby massive MIMO system will be described in detail in the Chapter 4 of
the thesis. Of course, there are a number of serious practical constraints – e.g.,
large power consumption, low efficiency of power amplifiers, hardware com-
plexity, ADC and beamformer implementation – that currently prevent the fea-
sibility of a user terminal equipped with hundreds of antennas. Mobile devices
with a massive number of antennas thus will probably not be available in a few
years, but, given the intense pace of technological progress, sooner or later they
may become reality. As far as long-term forward-looking theoretical research
is concerned, it is a concrete hypothesis that doubly-massive MIMO systems at
mm-Waves will be a popular research topic for years to come.

3.4 Analog (beam-steering) beamforming optimality

One problem with massive MIMO systems is the cost and the complexity of
needed hardware to efficiently exploit a so large number of antennas. If fully
digital (FD) beamforming is to be made, as many radio frequency (RF) chains
will be needed as the number of antennas; consequently, energy consumption
will also grow linearly with the number of antennas. An evident concern is the
implementation complexity of the digital baseband and analog/RF hardware.
Technology scaling has fueled an impressive progress in wireless communica-
tion systems and it is essential to process many antenna signals. The flexibility
offered by FD beamforming leads to the highest theoretically achievable per-
formance, while hybrid analog-digital beamforming schemes are explored to
enable hardware reuse over antenna paths. However, neither the digital pro-
cessing nor the data converters are a complexity hurdle, although those are the
stages where hybrid beamforming primarily induces simplifications. The high-
speed interconnect that is the bottleneck in the realization of integrated systems.
Recently, lower complexity architectures have been proposed, encompassing,
for instance, 1-bit quantization of the antenna outputs [43] and hybrid ana-
log/digital beamforming structures [38], [41], [44] wherein an RF beamforming
matrix (whose entries operate as simple phase shifters) is cascaded to a reduced-
size digital beamformer. In [45] it has been shown that if the number of RF chains
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is twice the multiplexing order, the hybrid beamformer is capable of implement-
ing any FD beamformer. Now, while at µ-Waves the use of hybrid beamformer
brings an unavoidable performance degradation, at mm-Waves something dif-
ferent happens in the limiting regime of large number of antennas by virtue of
the different propagation mechanisms. Indeed, the channel matrix in Eq. (3.5)
can be compactly re-written as:

H = γ
N

∑
i=1

αiar(φ
r
i )a

H
t (φ

t
i ) , (3.12)

lumping the coefficients αi into the path-loss term, and grouping the two sum-
mations over the clusters and the rays in just one summation, with N being
the number of propagation paths from the transmitter to the receiver. Given
the continuous random location of the scatterers, the set of arrival angles will
be different with probability 1, i.e., there is a zero probability that two distinct
scatterers will contribute to the channel with the same departure and arrival
angles. Since, for a large number of antennas, aH

x (φ
x
p)ax(φx

p) → 0, provided
that φx

p 6= φx
q , x = {r, t}, it is possible to conclude that for large NT , vec-

tors at(φt
i ) for all i = 1, . . . , N converge to an orthogonal set, and, similarly, for

large NR, the vectors ar(φr
i ) for all i = 1, . . . , N converge to an orthogonal set

as well. Accordingly, in the doubly massive MIMO regime, the array response
vectors at(·) and ar(·) become the left and right singular vectors of the channel
matrix, i.e., the channel representation in Eq. (3.12) coincides with the singular-
value-decomposition of the channel matrix. Under this situation, purely analog
(beam-steering) beamforming becomes optimal. Otherwise stated, two main
consequences are pointed out. First, in a single-user link, the channel eigendi-
rections associated to the largest eigenvalues are just the beam-steering vectors
corresponding to the arrival and departure angles and associated with the pre-
dominant scatterers. This suggests that pre-coding and post-coding beamform-
ing simply require pointing a beam towards the predominant scatterer at the
transmitter and at the receiver respectively. Second, in a multiuser environment,
assuming that the links between the several users and the BS involve separate
scatterers and different sets of arrival and departure angles3, beam-steering ana-
log beamforming automatically results in no-cochannel interference (in the lim-
iting regime of infinite number of antennas) since the beams pointed towards
different users tend to become orthogonal.

3This is a quite reasonable assumption for sufficiently spaced mobile user locations
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FIGURE 3.3: Spectral efficiency of a mm-Wave MIMO wireless
link vs. received SNR for CM-FD beamforming and AN (beam-
steering) beamforming, for two different values of the number of
transmit and receive antennas and of the multiplexing order of

the system.

Fig. 3.3 provides some experimental evidence of the above statements. It is con-
sidered a single-user MIMO link at mm-Waves; the carrier frequency is 73 GHz,
the transmitting antenna height is 15 m, while the receiving antenna height is
1.65 m. All the parameters needed for the generation of the mm-Wave channel
matrix in Eq. (3.5) are the ones reported in [32] for the “open square model”.
Fig. 3.3 shows the system spectral efficiency measured in bit/s/Hz, versus the
received SNR, and it compares the performance of the CM FD beamforming and
the analog (AN) beam-steering beamforming. With CM beamforming the pre-
coding and post-coding beamformers are the left and singular eigenvectors of
the channel matrix in Eq. (3.5) associated to the M largest eigenvalues respec-
tively; with AN beamforming, instead, the pre-coding and post-coding beam-
formers are simply the array responses corresponding to the departure and ar-
rival angles associated to the M dominant scatterers respectively. From the fig-
ure it is seen that AN beamforming achieves practically the same performance as
CM beamforming for multiplexing order M = 1, even in the case of not-so-large
number of antennas, while there is a small gap for M = 3; this gap is supposed
to get reduced as the number of antennas increases.
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3.5 Rank of the channel not increasing with NT and NR

At µ-Wave frequencies, the i.i.d. assumption for the small-scale fading compo-
nent of the channel matrix Hµ guarantees that with probability 1 the matrix has
rank equal to min(NT, NR). Consequently, as long as the rich-scattering environ-
ment assumption holds and the number of degrees of freedom of the radiated
and scattered fields is sufficiently high [46], the matrix rank increases linearly
with the number of antennas. At mm-Wave frequencies, instead, the validity
of the channel model in Eq. (3.5) directly implies that, including the LOS com-
ponent, the channel has at most the rank NclNray + 1, since it is expressed as
the sum of NclNray + 1 rank-1 matrices. This rank is clearly independent of
the number of transmit and receive antennas, so, mathematically, as long as
min(NT, NR) > NclNray + 1, increasing the number of antennas has no effect
on the channel rank. However, it is also suggested that, for an increasing num-
ber of antennas, the directive beams become narrower and more scatterers can
be resolved, which implies that the channel rank increases (even though proba-
bly not linearly) with the number of antennas. However, this is still a conjecture
that would need experimental validation. With respect to the number of anten-
nas, the described different behavior of the channel rank has a profound impact
on the multiplexing capabilities of the channel. Indeed, for µ-Wave systems, the
increase in the channel rank leads to an increase of the multiplexing capabili-
ties of the channel; on the other hand, the multiplexing capabilities depend on
the number of scatterers in the propagation environment in mm-Wave systems,
while the number of antennas just contributes to the increase of the received
power that can increase proportionally to the product NT NR.
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FIGURE 3.4: In (a) spectral efficiency vs. received SNR for an
mm-Wave channel varying the number of transmit and receive
antennas and multiplexing order, and in (b) spectral efficiency
vs. received SNR for a µ-Wave channel varying the number of

transmit and receive antennas and multiplexing order.

Fig. 3.4 provides experimental evidence of such a different behavior. The figure
shows the system spectral efficiency for mm-Wave and µ-Wave wireless MIMO
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links, for two different values of the number of receive and transmit antennas,
and for three different values of the multiplexing order M. The parameters of
the mm-Wave channel are the same as those in Fig. 3.3. Regarding the µ-Wave
channel, a carrier frequency equal to 1.9 GHz is considered and the standard
deviation of the shadow fading σsh is taken equal to 8 dB, while the parameters
of the three-slope path loss model in Eq. (3.3) are d0 = 50 m and d1 = 100 m.
It is clearly seen from Fig. 3.4 that the µ-Wave channel has larger multiplexing
capabilities than the mm-Wave channel; the gap between the two scenarios is
mostly emphasized for the large values of M and for NR × NT=100 x 1000.

3.6 Channel estimation

The number of channel coefficients grows linearly with the number of antennas
at the BS and MS. To have an approximate idea of the computational burden,
consider a system with 200 BS antennas and 20 spatially multiplexed single-
antenna MSs. Consider OFDM with 1024 subcarriers and channels that are con-
stant over 12 subcarriers. There are 3.4 105 complex scalar coefficients, which
amounts to 6.8 106 estimates each second if a channel coherence time of 50 ms is
assumed. These numbers increase if there are more antennas, more subcarriers,
and/or shorter coherence time.

3.6.1 µ-Wave channel estimation complexity

At µ-Wave, there is generally multi-path propagation caused by a multitude
of scattering clusters. The channel coefficients are correlated across antennas,
but this can only be utilized to marginally improve the estimation quality, at
the cost of substantially higher complexity. Nevertheless, the estimation can be
conveniently implemented in hardware and the estimation overhead is small
when operating in TDD mode and exploiting channel reciprocity to only send
uplink pilots. Anyway, in µ-Wave massive MIMO systems, channel estimation
is a rather difficult and resource-consuming task, since it requires the separate
estimation of each entry of the matrix Hµ. It thus follows that in a multiuser sys-
tem with K users equipped with NR antennas each, the number of parameters to
be estimated is KNRNT, where NT denotes the number of antennas at the BS. The
attendant computational complexity needed to perform channel estimation is a
growing function of the number of used antennas. The increase of the number of
antennas NR at the mobile devices has a direct impact on the network capacity.
Indeed, let τc denote the duration (in discrete samples) of the channel coherence
time and τp the length (again in discrete samples) of the pilot sequences used
on the uplink for channel estimation; since the length of pilot sequences must
be a fraction (typically no more than 1/2) of the channel coherence length, and
since the use of orthogonal pilots across users requires that KNR ≤ τp < τc, it
is readily seen that there is a physical bound on the maximum number of users
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and the number of transceiver antennas at the mobile device. Such a bound
is the main underlying motivation for the fact that a considerable share of the
available literature on massive MIMO systems at µ-Waves focuses on the case
of single-antenna mobile devices, and with NR = 1, the number of users K can
be taken larger. In order to increase the number of supported users, pseudo-
orthogonal pilots with low cross-correlation are used, even though this leads to
the well-known pilot contamination problem that, as discussed in Chapter 2, is
the ultimate performance limit in µ-Wave massive MIMO systems [4].

3.6.2 mm-Wave channel estimation complexity

At mm-Wave, the channel can potentially be parameterized (considering a phas-
esynchronized array with a known angular array response as reported in Eq.
(3.5)) because it consists of a (potential) LOS path and few one-bounce reflec-
tions. Instead of estimating the individual entries of the channel matrix H, a
few angular channel coefficients can be estimated to acquire the entire channel,
leading to greatly reduced complexity. When a single data-stream is to be sent,
it suffices to estimate the dominant angle-of-arrival/departure, but also reflec-
tions can be taken into account. However, if hybrid beamforming is used, the
phase-shifters create a very directional “vision” and only channel components
in that direction can be estimated. To discover new MSs, track channel vari-
ations, or keep the connection when the LOS path is blocked, beam-sweeping
is needed (i.e., the channel must be estimated in many different directions to
identify the preferable ones). This procedure increases the overhead from CSI
acquisition, which grows with the number of antennas. While TDD operation
is preferable at µ-Wave massive MIMO, in mm-Wave bands frequency-division-
duplex (FDD) may be equally good since the channel-describing angular pa-
rameters are reciprocal over a wide bandwidth. Based on this consideration, the
computational complexity of the channel estimation schemes at mm-Waves may
be smaller than that at µ-Waves.

3.6.3 Performance comparison

Channel estimation for mm-Wave frequencies is a research track that is currently
under development, whereas for µ-Waves this is a rather mature area. Among
the several existing approaches to perform channel estimation at mm-Waves, the
most considered ones rely either on compressed sensing or on subspace meth-
ods. As an example, reference [47] shows that at mm-Waves, for increasing num-
ber of antennas, the most significant components of the received signal lie in a
low-dimensional subspace due to the limited angular spread of the reflecting
clusters. This low-dimensionality feature can be exploited in order to obtain
channel estimation algorithms based on the sampling of only a small subset
rather than of the whole number of antenna elements. Consequently, channel



44 Chapter 3. Massive MIMO at mm-Wave and at µ-Wave frequencies

estimation can be performed using a reduced number (with respect to the num-
ber of receive antennas) of required RF chains and A/D converters at receiver
front-end. Reference [48], instead, develops subspace-based channel estimation
methods exploiting channel reciprocity in time-division-duplex (TDD) systems,
using the well-known Arnoldi iteration and explicitly taking into account the
adoption of hybrid analog/digital beamforming structures at the transmitter
and at the receiver. Subspace methods are particularly attractive in those situa-
tions where it is of interest to estimate the principal left and right singular eigen-
vectors of the channel matrix H, which, in the doubly massive MIMO regime,
are well-approximated by the array response vectors corresponding to the dom-
inant scatterers. As done in [49], applying fast subspace estimation algorithms
such as the Oja’s one [50], the dominant channel eigenvectors can be directly
obtained by the sample estimate of the data covariance matrix, with no need to
directly estimate the whole channel matrix H.
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3.

Figs. 3.5 and 3.6 show numerical results concerning channel estimation at µ-
Wave and at mm-Wave channel frequencies. In particular, both figures report
the spectral efficiency vs. the received SNR for two different antenna config-
urations and by contrasting the case of perfect channel state information (CSI)
with the case in which the channel is estimated based on training pilots. In both
figures a single-user MIMO link is considered, and channel estimation is carried
out assuming that each transmit antenna sends an orthogonal pilot. The number
of signaling intervals devoted to channel estimation coincides with the number
of transmit antennas. Note that this is the minimum possible duration in order
to be able to send orthogonal pilots. Channel estimation at µ-Wave frequencies
(Fig. 3.5) is made using the linear minimum mean square errors (LMMSE) crite-
rion ([51]), while at mm-Wave frequencies (Fig. 3.6) the approximate maximum
likelihood (AML) algorithm of [47] and the orthogonal Oja (OOJA) algorithm
[49] are used. Comparing the figures, it is clearly seen that the gap between the
case of estimated channel and the case of perfect CSI is smaller at mm-Wave fre-
quencies, especially when the OOJA algorithm is considered. Conversely, this
gap is larger at µ-Waves, and it grows with the dimension of the user antenna ar-
rays. This behavior can be intuitively explained by virtue of the parametric form
of the mm-Wave channel model in Eq. (3.5), which permits the development of
efficient channel estimation algorithms.
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3.7 Pilot contamination effect

Pilot contamination is the ultimate disturbance in massive MIMO systems oper-
ating at µ-Waves. As already discussed above, the impossibility to have a num-
ber of orthogonal pilots larger than the number of signaling intervals devoted to
channel estimation leads to the use of pseudo-orthogonal, low cross-correlation
sequences. Accordingly, in a massive MIMO system, when the MSs transmit
their own pilot sequences in the uplink training phase to enable channel estima-
tion at the BSs, every BS learns the channel from the intended MS, and also small
pieces of the channels from the other MSs using pilots that are correlated to the
one used by the intended MS. This phenomenon, in turn, causes a saturation in
the achieved SINR both in the downlink and in the uplink. The deceitful nature
of pilot contamination in massive MIMO systems was discussed by Marzetta in
his landmark paper [4] and since then, many authors have deeply investigated
its effects and proposed strategies to counterbalance its effects [10], [52], [53].
All of these papers deal with the case of a µ-Wave massive MIMO system. Pi-
lot contamination at mm-Wave frequencies is instead a much less-studied topic
(some initial results are reported in [54]). This is in part due to the fact that mas-
sive MIMO at mm-Waves is a more recent research topic than massive MIMO
at µ-Waves. On the other hand, it may be envisioned that pilot contamination
may be less critical at mm-Waves than it has revealed at µ-Waves, mainly for the
short-range nature of mm-Wave links. In particular, while the range of µ-Wave
links can be in the order of thousands of meters, the range for mm-Wave links
will be more than one order of magnitude smaller, due to the increased path loss
and a larger relevance of signal blockages. Mm-Wave frequencies will be used
for short-range communications in small cells, which, by nature, usually serve a
smaller number of users than conventional micro-cells and macro-cells. There-
fore, on one hand, the signals transmitted by the MSs during uplink training
fade rapidly with the distance, and thus they should not be a serious impair-
ment to surrounding BSs learning the channel from their intended MSs; on the
other hand, the reduced number of users in each cell will lead to a less severe
shortage of orthogonal pilots. The results in [54] seem to confirm such increased
resilience of mm-Waves to the pilot contamination problem.

3.8 Antenna diversity/selection procedures

The i.i.d. nature of the fast fading component in the MIMO channel matrix at
µ-Waves in Eq. (3.1) leads to a monotonic increase of the diversity order with the
number of antennas. In particular, an NR × NT channel brings a diversity order
equal to NR × NT, thus implying that the average error probability decreases to
a zero, in the limit of large SNR, as SNR−NR NT . Such a diversity order can be
attained through a simple antenna selection procedure by picking the transmit
and receive antennas corresponding to the entry with the largest magnitude in
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the channel matrix Hµ. Looking at this fact from a different perspective, it is
possible to recall the well-known probability result stating that the maximum
of a set of positive i.i.d. random variables taking value in the interval [0,+∞),
becomes unbounded with probability 1 as the cardinality of the set diverges. As
a consequence, for increasing number of antennas, the probability of observing
a very large entry in the channel matrix rapidly increases. The open literature is
rich of studies exploiting this peculiarity of µ-Wave MIMO channels and propos-
ing diversity techniques based on antenna selection procedures (e.g., [55] and
[56]). At mm-Waves, instead, given the parametric channel model in Eq. (3.5),
a different behavior is observed. In particular, the entries of the matrix channel
have no longer an i.i.d. component, and this implies that the maximum of the
magnitudes of the entries of H grows at a much reduced pace. As a consequence,
diversity techniques using antenna selection procedures are less effective. As an
experimental evidence of this fact, the parameter η is defined as the ratio be-
tween the largest squared magnitude among the entries of the channel, and the
average squared magnitude

η = NRNT

max
i,j

∣∣∣∣(Ĥ
)
(i,j)

∣∣∣∣2
tr
(

ĤĤH
) , (3.13)

where Ĥ = H in the case of mm-Wave channel and Ĥ = Hµ in the case of
µ-Wave channel.
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FIGURE 3.7: Values of the performance measure η for several
antenna array sizes for the mm-Wave and µ-Wave channels.

Fig. 3.7 reports η for different values of NR × NT, and for both the µ-Wave and
mm-Wave channel models. The larger η is, the more unbalanced are the mag-
nitudes of the entries of the channel matrix, since η basically measures how far
is the largest entry in H from the average magnitude. Fig. 3.7, shows that the
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parameter η is in general an increasing function of the number of antenna ele-
ments, but it grows much more rapidly in the case of µ-Wave channels.
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Chapter 4

Doubly massive MIMO
mm-Wave systems

Referred articles published in the IEEE Transactions on Green Communications and
Networking 2018 and in theProc. of 2016 IEEE Global Communications Conference
(GLOBECOM).

4.1 Introduction

The use of frequency bands at mm-Waves for cellular communications is among
the most striking technological innovations brought by 5G and beyond-5G wire-
less networks4 [1]. For conventional sub-6 GHz cellular systems it has been
shown that equipping a BS with a very large (> 100) number of antennas, the
massive MIMO technique [4], [25], [57], significantly increases the network ca-
pacity, mainly due to the capability of serving several users on the same fre-
quency slot with nearly orthogonal vector channels. In the massive MIMO lit-
erature, while the number of antennas at the BS grows large, the user device is
usually assumed to have only one or very few antennas: indeed, at sub-6 GHz
frequencies the wavelength is in the order of several centimeters, thus making
it difficult to pack many antennas on small-sized user devices. When moving
to mm-Wave, however, the wavelength gets reduced, and, at least in principle,
a large number of antennas can be mounted not only on the BS, but also on the
user device. As an example, at a carrier frequency of 30 GHz the wavelength is
1 cm, and for a planar antenna array with λ/2 spacing, more than 180 antennas
can be placed in an area as large as a standard credit card. This leads to the
concept of doubly massive MIMO system [29], [58], that is defined as a wireless
communication system where the number of antennas grows large at both the
transmitter and the receiver.
While there are certainly a number of serious practical constraints – e.g., large
power consumption, low efficiency of power amplifiers, hardware complexity,
ADC and beamformer implementation – that currently prevent the feasibility of

4Strictly speaking, mm-Waves is a term that historically refers to the range of frequencies
above 30 GHz, in the recent literature about future wireless networks the term is used to refer to
frequency above-6 GHz, in contrapposition to the usual cellular frequencies located below 6 GHz.
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an user terminal equipped with a very large number of antennas, it is on the
other hand believed that these are just technological issues that will be solved
or worked around in the near future, and thus this chapter of the thesis presents
results on the doubly massive MIMO regime for wireless systems operating at
mm-Wave. When considering MIMO architectures, and in particular massive
MIMO ones, hardware complexity and energy consumption issues make the
use of conventional FD beamforming, which requires one RF chain for each
antenna element, rather prohibitive; as a consequence, recent research efforts
have been devoted towards devising suboptimal, lower complexity, beamform-
ing structures [59]. In particular, hybrid (HY) beamforming structures have been
proposed, with a limited number (much smaller than the number of antenna
elements) of RF chains. The paper [60] analyzes the achievable rate for a MU-
MIMO system with HY pre-coding and limited feedback; it is therein shown
that, for the case of single-path (i.e., rank-1) channels, HY pre-coding structures
achieve a spectral efficiency very close to that of a FD beamformer. In [45], it is
shown that a HY beamformer with twice as many RF chains as transmitted data
streams may exactly mimic a FD beamformer; the analysis, which neglects en-
ergy efficiency issues, is however limited to either a single-user MIMO system
or a MU-MIMO system with single-antenna receivers. The paper [61] proposes
a new low-complexity post-coding structure, based on switches rather than on
analog phase shifters; the performance of this new structure is evaluated in a
rather simple scenario, i.e., single-user MIMO system with a limited number of
transmit and receive antennas. The paper [62] focuses on sub-6 GHz frequen-
cies and introduces a novel post-coding structure made of fixed (rather than
tunable) phase shifters and of switches, under the assumption that the receiver
is equipped with a large array, while the transmitters have only one antenna. In
[44], the authors considers five different low-complexity decoding structures, all
based on the use of phase shifters and switches, and provide an analysis of the
achievable spectral efficiency along with estimates of the energy consumption
of the proposed structures. The paper, however, does not analyze the system
energy efficiency (i.e., the ratio of the achievable rate to the consumed power
[63]), and focuses only on the receiver omitting a similar analysis for the trans-
mitter implementation. The paper [64] considers the issue of energy efficiency in
a downlink massive MIMO mm-Wave systems by deriving an energy-efficient
HY beamformer; however, the paper considers the case in which the user ter-
minals are equipped with just one antenna, and this is a key assumption that is
exploited to solve the considered optimization problems. In [65], a consumed
power model for components designed for 60 GHz is given, and a comparison
between FD beamforming, 1-bit ADC, and analog beamforming is given.
This chapter of the thesis focuses on both the ASE and the GEE of several pre-
coding and post-coding structures, ranging from the FD beamformers, to their
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HY analog-digital implementations, to the lower complexity purely AN beam-
forming structures. It also proposes extensions to the considered scenario of re-
cently proposed beamforming structures such as the one based on switches [61]
and the one based on fixed phase shifters and switches [62]. Putting emphasis
on the large number of antennas regime, asymptotic formulas of the ASE and
of the GEE are derived with reference to some of these post-coding structures.
Special emphasis, at the analysis stage, is also given to the purely AN (beam-
steering) beamformer, that can be considered as a promising solution given its
extremely low complexity. While the results on the ASE confirm, as expected,
that FD beamforming achieves better performance than lower-complexity struc-
tures, things are a little bit more involved and surprising when considering the
GEE. Indeed, here, the relative ranking of the several low-complexity struc-
tures strongly depends on the adopted power consumption model for ampli-
fiers, phase shifters, switches, etc., and our results show that, using recent power
models, FD beamforming may be the most energy-efficient solution. The chap-
ter of the thesis also studies the system GEE as a function of the transmitted
power, and numerically finds the optimal value for the transmitted power (around
the value 0 dBW in the downlink); going beyond this point increasing the trans-
mit power is not convenient from an energy-efficient point of view since it yields
a limited increase in the network throughput at the price of a strong increase of
the consumed energy.
The remainder of this chapter is organized as follows. In Section 4.2 the system
model is described. Section 4.3 contains the description of the several considered
beamforming structures, while in Section 4.4 asymptotic formulas for the system
ASE and GEE of two FD beamformers, in the limit of large number of antennas
are derived, both for the uplink and downlink. Section 4.5 is entirely devoted to
the exposition of asymptotic results for the purely analog beam-steering beam-
formers, while in Section 4.6 extensive numerical results are discussed.

4.2 System model

This chapter of the thesis focuses on a single-cell MU-MIMO system wherein
one BS communicates, on the same frequency slot, with several mobile users.
As in Chapter 3, the parameter NT denotes the number of transmit antennas at
the BS, and NR denotes the number of receive antennas at the user’s device5.

5For the sake of simplicity all the mobile receivers are assumed to have the same number of
antennas; however, this hypothesis can be easily relaxed.



52 Chapter 4. Doubly massive MIMO mm-Wave systems

4.2.1 Clustered channel model

The popular narrowband clustered mm-Wave channel model is assumed to hold
[38]–[40], [66]. As detailed in Section 3.2.2, the baseband equivalent of the prop-
agation channel between the transmitter and the generic receiver is thus repre-
sented by Eq. (3.5).

4.2.2 Transmitter and receiver processing

• Downlink: Assume that M denotes the number of data symbols sent to
each user in each signalling interval6, and xk is the M-dimensional vector
of the data symbols intended for the k-th user; the discrete-time signal
transmitted by the BS can be expressed as the NT-dimensional vector sT =

∑K
k=1 Qkxk, with Qk the (NT × M)-dimensional pre-coding matrix for the

k-th user. The signal received by the generic k-th user is expressed as the
following NR-dimensional vector

yk = HksT + wk , (4.1)

with Hk representing the clustered channel (modeled as in Eq. (3.5)) from
the BS to the k-th user and wk is the NR-dimensional additive white Gaus-
sian noise with zero-mean i.i.d. entries with variance σ2

n . Denoting by Dk

the (NR ×M)-dimensional post-coding matrix at the k-th user device, the
following M-dimensional vector is finally obtained:

rk = DH
k HkQkxk +

K

∑
`=1
` 6=k

DH
k HkQ`x` + DH

k wk . (4.2)

• Uplink: In an uplink scenario, K denotes the number of users simulta-
neously transmitting to the BS in the same frequency band, and M again
denotes the number of data symbols sent by each user in each signalling
interval. Letting now xk be the M-dimensional vector of the data symbols
from the k-th user, the discrete-time signal transmitted by the k-th user
device is expressed as the NT-dimensional vector sk = Qkxk, with Qk the
(NT ×M)-dimensional pre-coding matrix for the k-th user. The signal re-
ceived by the BS is expressed as the following NR-dimensional vector

y =
K

∑
k=1

HkQkxk + w , (4.3)

with Hk representing now the channel from the k-th user to the BS and w
the NR-dimensional additive white Gaussian noise with zero-mean i.i.d.
entries with variance σ2

n . Assuming, for the sake of simplicity, single-user

6Otherwise stated, the BS transmits in each time-frequency slot MK data symbols.
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processing at the BS, a soft estimate of the symbols from the k-th user is
obtained as

x̂k = DH
k y = DH

k HkQkxk +
K

∑
`=1
` 6=k

DH
k H`Q`x` + DH

k w , (4.4)

with Dk the (NR × M)-dimensional post-coding matrix for the k-th user
symbols. Now, depending on the choice of the pre-coding and post-coding
matrices Qk and Dk, several transceiver structures can be conceived. These
will be illustrated later in the next section.

4.2.3 Performance measures

Two performance measures will be considered: the ASE and the GEE. The ASE
is measured in [bit/s/Hz], while the GEE is measured in [bit/Joule] [63]. As-
suming Gaussian data symbols in (4.2), the ASE for the downlink case is [67]

ASE =
K

∑
k=1

log2

∣∣∣∣IM +
PT

KM
R−1

D,k
DH

k HkQkQH
k HH

k Dk

∣∣∣∣ , (4.5)

wherein IM is the identity matrix of order M, PT is the BS transmit power, and,
according again to the signal model (4.2) RD,k is the covariance matrix of the
overall disturbance seen on the downlink by the k-th user receiver, i.e.,

RD,k = σ2
nDH

k Dk +
PT

MK

K

∑
`=1
` 6=k

DH
k HkQ`QH

` HH
k Dk . (4.6)

For the uplink, instead, the k-th user ASE is [67]

ASEk = log2

∣∣∣∣IM +
PT,k

M
R−1

U,k
DH

k HkQkQH
k HH

k Dk

∣∣∣∣ , (4.7)

∀k = 1, . . . , K, wherein PT,k is the k-th user transmit power, and the overall dis-
turbance covariance matrix, according to the signal model in (4.4), is now writ-
ten as7

RU,k = σ2
nDH

k Dk +
K

∑
`=1
` 6=k

PT,`

M
DH

k H`Q`QH
` HH

` Dk . (4.8)

Regarding the GEE, on the downlink it is defined as

GEE =
WASE

ηPT + PTX,c + KPRX,c
, (4.9)

where W is the system bandwidth, PTX,c is the amount of power consumed by
the BS circuitry, PRX,c is the amount of power consumed by the mobile user’s

7Note that the power budget, both at the BS and at the user’s transmitters, is assumed to be
uniformly divided among the data streams, although power allocation could be easily performed.
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device circuitry, and η > 1 is a scalar coefficient modelling the power amplifier
inefficiency. Note that, differently from what happens in the most part of exist-
ing studies on energy efficiency for cellular communications (see, for instance,
references of [63]), the GEE definition (4.9) includes here the power consumed
both at the BS and at the mobile user’s devices.
For the uplink scenario, instead the GEE of the k-th user is

GEEk =
WASEk

ηPT,k + PTX,c
, (4.10)

where PTX,c is now the amount of power consumed by the k-th mobile device
circuitry. Notice that in this case the power consumed by the BS is not included
in the definition; this is a customary choice when defining energy efficiency in
the uplink in order to have a performance measure that can be used for non-
cooperative resource allocation procedures [63], [68].

4.3 Beamforming structures

In the following, some beamforming pre-coding and post-coding structures are
detailed, along with details on their power consumption. The section mainly
focuses on the downlink, although the uplink case can be treated with minor
modifications.

4.3.1 Channel-matched, fully-digital (CM-FD) beamforming

Let Hk = UkΛkVH
k denote the singular-value-decomposition (SVD) of the matrix

Hk, and assume, without loss of generality, that the diagonal entries of Λk are
sorted in descending order. The column vectors uk,i and vk,i denote the i-th
column of the matrices Uk and Vk, respectively. The k-th user pre-coding and
post-coding matrices QCM−FD

k and DCM−FD
k are chosen as the columns of the

matrices Vk and Uk, respectively, corresponding to the M largest entries in the
eigenvalue matrix Λk, i.e.,

QCM−FD
k = [vk,1 vk,2 . . . vk,M] ,

DCM−FD
k = [uk,1 uk,2 . . . uk,M] ,

(4.11)

∀k = 1, . . . , K. The CM-FD beamforming is optimal in the interference-free case,
and tends to be optimal in the case in which the number of antennas at the
transmitter grows large. The considered FD pre-coding architecture requires a
baseband digital precoder that adapts the M data streams to the NT transmit
antennas; then, for each antenna there is a digital-to-analog-converter (DAC),
an RF chain and a power amplifier (PA). At the receiver, a low noise amplifier
(LNA), an RF chain, an analog-to-digital converter (ADC) is required for each
antenna, plus a baseband digital combiner that combines the NR outputs of ADC
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to obtain the soft estimate of the M trasmitted symbols. The amount of power
consumed by the transmitter circuitry can thus be expressed as

PTX,c = NT (PRFC + PDAC + PPA) + PBB , (4.12)

and the amount of power consumed by the receiver circuitry can be expressed
as

PRX,c = NR (PRFC + PADC + PLNA) + PBB . (4.13)

In the above equations, PRFC = 40 mW [44] is the power consumed by the
single RF chain, PDAC = 110 mW [69] is the power consumed by each DAC,
PADC = 200 mW [44] is the power consumed by each ADC, PPA = 16 mW [70] is
the power consumed by each PA, PLNA = 30 mW [44] is the power consumed by
each LNA, and PBB is the amount of power consumed by each baseband beam-
formers; assuming a CMOS implementation we have a power consumption of
243 mW [71]. The values of the power consumed by the each ADC present high
variability in the current literature [44]. A conservative value is chosen since the
literature does not refer to commercial products and these values might be too
optimistic with respect to the final products. The values of the power consump-
tion of each device considered in this section are summarized in Table 4.1.

TABLE 4.1: Power consumption of each device

Name Value Device Reference
PRFC 40 mW RF chain [44]
PDAC 110 mW DAC [69]
PADC 200 mW ADC [44]
PPA 16 mW PA [44]
PLNA 30 mW LNA [44]
PBB 243 mW Baseband beamformer [71]
PPS 19.5 mW Phase shifter [72]
Pelement 27 mW Element of the pased array [70]
PSW 5 mW Switch [44]
Pfixed

PS 1 mW Constant phase shifter -

4.3.2 Partial zero-forcing, fully digital (PZF-FD) beamforming

Zero-forcing pre-coding nulls interference at the receiver through the constraint
that the k-th user pre-coding be such that the product H`Qk = 0NT×M for all
` 6= k. In order to avoid a too severe noise enhancement, a partial zero-forcing
approach is adopted here, namely the columns of the pre-coding matrix Qk are
required to be orthogonal to the M (the number of transmitted data-streams
to each user) right eigenvectors of the channel H` corresponding to the largest
eigenvalues of H`, for all ` 6= k. In this way, the precoder orthogonalizes
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only to a M(K − 1)-dimensional subspace and nulls the most significant part
of the interference. Formally, the precoder QPZF−FD

k is obtained as the projec-
tion of the CM-FD precoder QCM−FD

k onto the orthogonal complement of the
subspace spanned by the M dominant right eigenvectors of the channel matri-
ces H1, . . . , Hk−1, Hk+1, . . . , HK. The post-coding matrix is instead obtained as
DPZF−FD

k = (HkQPZF−FD
k )+. Since the PZF-FD beamforming requires a FD post-

coding, its power consumption is the same as that of the CM-FD beamformer.

FIGURE 4.1: Block-scheme of a transceiver with HY digi-
tal/analog beamforming.

4.3.3 Channel-matched, hybrid (CM-HY) beamforming

In order to avoid the same number of RF chains as the number of antennas, HY
beamforming architectures have been proposed; in particular, denoting by NRF

T

and NRF
R the number of RF chains available at the transmitter and at the receiver,

respectively, the k-th user pre-coding and post-coding matrices are decomposed
as follows:

QCM−HY
k = QRF

k QBB
k , DCM−HY

k = DRF
k DBB

k . (4.14)

In the above decomposition, the matrices QRF
k and DRF

k have dimension (NT ×
NRF

T ) and (NR × NRF
R ), respectively, and their entries are constrained to have

constant (unit) norm (i.e., they are implemented through a network of phase-
shifters8); the matrices QBB

k and DBB
k , instead, have dimension (NRF

T × M) and

8The case of quantized phase-shifts is also considered in the literature, but it is neglected here
for the sake of simplicity.
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Algorithm 1 Block Coordinate Descent for Subspace Decomposition Algorithm
for Hybrid Beamforming

1: Initialize Imax and set i = 0
2: Set arbitrary QRF,0 and DRF,0
3: repeat

4: Update QBB,i+1 =
(

QH
RF,iQRF,i

)−1
QH

RF,iQ
opt

and DBB,i+1 =
(

DH
RF,iDRF,i

)−1
DH

RF,iD
opt

5: Set φi = QoptQH
BB,i+1

(
QBB,i+1QH

BB,i+1

)−1

and ψi = DoptDH
BB,i+1

(
DBB,i+1DH

BB,i+1

)−1

6: Update QRF,i =
1√
NT

ejφi

and DRF,i =
1√
NR

ejψi

7: Set i = i + 1
8: until convergence or i = Imax

(NRF
R ×M), respectively, and their entries are unconstrained complex numbers.

A block-scheme of the architecture of the HY transceiver is depicted in Fig. 4.1.
Now, designing an HY beamformer is tantamount to finding expressions for the
matrices QRF

k , QBB
k , DRF

k , and DBB
k , so that the desired beamformers reported in

Eq. (4.14) are approximated. For the CM-HY beamforming, the desired beam-
formers are the PZF-FD matrices, and their approximation is realized by using
the block coordinate descent for subspace decomposition algorithm [48], [73],
briefly reported in Algorithm 1, with Qopt = QCM−FD and Dopt = DCM−FD.
The number of RF chains at the BS is KM, while at the mobile terminal it is M.
The amount of power consumed by the transmitter circuitry is [44]:

PTX,c = NRF
T (PRFC + PDAC + NTPPS) + NTPPA + PBB , (4.15)

and the amount of power consumed by the receiver circuitry is:

PRX,c = NRF
R (PRFC + PADC + NRPPS) + NTPLNA + PBB . (4.16)

Numerical values for the above quantities have already been given, except that
for PPS, the power consumed by each phase shifters, that is assumed to be 19.5
mW as in [72].

4.3.4 Partial zero-forcing, hybrid (PZF-HY) beamforming

Similarly to what has been described in the previous subsection, also the PZF
beamformers may be approximated through HY architectures. In this case, ex-
pressions for the matrices QRF

k , QBB
k , DRF

k , and DBB
k are to be found, so that the

PZF-FD beamforming matrices are approximated as closely as possible. Also
in this case the block coordinate descent for subspace decomposition algorithm
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can be used and the hybrid beamformers are evaluated following Algorithm 1,
with Qopt = QPZF−FD and Dopt = DPZF−FD. Again the number of RF chains
at the BS is KM, while at the mobile terminal is M. The amount of power con-
sumed by the transmitter circuitry of th PZF-HY beamformers is the same as
that consumed by the CM-HY ones.

4.3.5 Fully analog (AN) beam-steering beamforming

Fully analog beamforming requires that the entries of the pre-coding and post-
coding matrices have a constant norm. Here, it is considered an even simpler
structure by introducing a further constraint and assuming that the columns of
matrices Qk and Dk are unit-norm beam-steering vectors, i.e., the generic col-
umn of an N-dimensional beamformer is

a(φ) =
1√
N
[1 e−jkd sin φ . . . e−jkd(N−1) sin φ] . (4.17)

Focusing on the generic k-th user, the columns of the matrix QAN
k are chosen as

the array responses corresponding to the departure angles in the channel model
(3.5) associated to the M dominant paths. A similar choice is made for DAN

k ,
whose columns contain the array responses corresponding to the M arrival an-
gles associated to the M dominant paths. In order to avoid self-interference,
a further constraint is added in the choice of the dominant paths to ensure that
the angles of departure (arrival) of the selected paths are spaced of at least 5 deg.
Note that for large values of NT and NR the array responses of the transmitter
and receiver, corresponding to the departure and arrival angles associated to
the dominant propagation path, become concident with dominant right and left
singular vectors of the channel. This implies that the AN beamforming struc-
ture (4.17) tends to become optimal. The amount of power consumed by the
transmitter circuitry is:

PTX,c = NRF
T (PRFC + NTPelement + PDAC) , (4.18)

and the amount of power consumed by the receiver circuitry is:

PRX,c = NRF
R (PRFC + NRPelement + PADC) , (4.19)

where Pelement = 27 mW [70] is the power consumed by each element of the
phased array.
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FIGURE 4.2: Block-scheme of a transceiver where beamforming
is implemented with switches and NQ constant phase shifters per

RF chain.

4.3.6 Beamforming based on switches and fixed
phase shifters (SW+PHSH)

The considered structure, depicted in Fig. 4.2, builds upon [62], wherein a mas-
sive MIMO combiner is proposed based on the use of switches and fixed (i.e.,
not tunable) phase shifters. The scheme in Fig. 4.2 extends the structure of [62]
by including also the pre-coding design. The design of the SW+PHSH beam-
formers is detailed in the following. The (i, `)-entry of the pre-coding matrix is
in the form

(
QSW+PHSH)

(i,`) = ejφi,` , where the phase φi,` can take only discrete
quantized values. It is thus a unitary module entry with a quantized phase that
is obtained substituting the phase of corresponding entry of the pre-coding ma-
trix intended to be synthesized with the nearest quantizated phase, taken from
the set

{
2(q−1)π

NQ
, q = 1, . . . , NQ

}
. The procedure for the design of the SW+PHSH

pre-coder is detailed in Algorithm 2, with Qopt = QPZF−FD. A similar reasoning
is followed for the entries of the post-coding matrix DSW+PHSH.
The number of quantized phases will be NQ = 8, and that the number of RF
chains is KM at the BS and M at the users’ devices. The number of fixed phase
shifters per RF chain is NQ, along with NRF

T and NRF
R switches per antenna at the

transmitter and at the receiver, respectively. The amount of power consumed by
the transmitter circuitry is:

PTX,c = NRF
T
(

PRFC + PDAC + NQPfixed
PS

)
+ NT

(
NRF

T PSW + PPA
)
+ PBB , (4.20)
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Algorithm 2 Design of the SW+PHSH pre-coder

1: Initialize ϑq =
2(q−1)π

NQ
, q = 1, . . . , NQ

2: for i = 1, . . . , NT do
3: for ` = 1, . . . , M do
4: φi,` = argmin

q=1,...,NQ

Qopt − ϑq

5: Set
(
QSW+PHSH)

(i,`) = ejφi,`

6: end for
7: end for

and the amount of power consumed by the receiver circuitry is:

PRX,c = NRF
R
(

PRFC + PADC + NQPfixed
PS

)
+ NR

(
NRF

R PSW + PLNA
)
+ PBB .

(4.21)
In the above equations, PSW = 5 mW [44] is the power consumed by the single
switch, and Pfixed

PS is the power consumed by the constant phase shifter; this term
is of course lower than the power consumed by a tunable phase shifter, and is
set to 1 mW.

4.3.7 Switch-based (SW) beamforming

A beamforming structure exclusively based on the use of switches is reported in
[61]. Once again, NRF

T and NRF
R denote the number of RF chains at the transmitter

and at the receiver, respectively, and it is assumed that there are NRF
T switches at

the transmitter and NRF
R at the receiver that select the antennas using the Mini-

mum Frobenius Norm (MFN) algorithm in [61]. The design of the switch-based
beamformers is detailed in the following. The pre-coding matrix is in the form
QSW = SQBB where S is a

(
NT × NRF

T
)
-dimensional matrix with columns that

have exactly one position containing the value 1 and the other entries in the ma-
trix are 0, and QBB is the NRF

T ×M-dimensional baseband pre-coding matrix. It
can be thus shown that the matrix QSW contains non-zero NRF

T rows correspond-
ing to the NRF

T rows of the pre-coding matrix intended to be synthesized with
the largest norm. The procedure for the design of the SM pre-coder is detailed
in Algorithm 3. A similar reasoning is followed for the entries of the post-coding
matrix DSW.
Again, the number of RF chains in the BS is assumed to be equal to KM, while
at the mobile terminal it is equal to M. The amount of power consumed by the
transmitter circuitry is:

PTX,c = NRF
T (PRFC + PDAC + PSW) + NRF

T PPA + PBB , (4.22)

and the amount of power consumed by the receiver circuitry is:

PRX,c = NRF
R (PRFC + PADC + PSW) + NRF

R PLNA + PBB . (4.23)
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Algorithm 3 Design of the SW pre-coder

1: Initialize S = 0NT×NRF
T

2: for ` = 1, . . . , NRF
T do

3: Set q` =
(
QBB)

(:,`)

4: Compute the vector |q`|2, containing the square module of the entries of
q`

5: Denote as i∗ the position of the maximum entry of |q`|2
6: Set (S)(i∗,`) = 1
7: end for
8: QSW = SQBB

4.4 Asymptotic ASE and GEE analysis for the CM-FD and
PZF-FD beamformers for large number of antennas

4.4.1 CM-FD beamforming, downlink

Focusing on the downlink, in the large number of antennas regime, making the
assumption that the set of arrival and departure angles across clusters and users
are different with probability 1, it readily follows from the SVD expression of
the channel that DH

k HkQ` → Λk,MVk,MQ`, whenever k 6= `, where Λk,M is an
(M × M)−dimensional diagonal matrix containing the M largest eigenvalues
(denoted by λk,1, . . . , λk,M) of the channel matrix Hk and Vk,M is an (NT × M)-
dimensional matrix containing the columns of Vk associated to the eigenvalues
in Λk,M. Using the above limiting values, the asymptotic ASE in Eq. (4.5) can be
expressed as

ASE ≈
K

∑
k=1

log2

∣∣∣∣∣∣∣IM+
PT

KM

σ2
nIM+

PT

MK

K

∑
`=1
` 6=k

Λk,MVH
k,MQ`QH

` Vk,MΛH
k,M


−1

Λk,MΛH
k,M

∣∣∣∣∣∣∣ .

(4.24)
In order to explicitly show the dependence of the above formula on the num-
ber of antennas, note that the squared moduli of the eigenvalues λk,i depend
linearly on the product NT NR. Otherwise stated, the following holds: λk,q =√

NT NRλ̃k,q , ∀k, q , with λ̃k,q normalized eigenvalues independent of the num-
ber of transmit and receive antennas. Using this last relation, and denoting
by {µk,q}M

q=1 the eigenvalues of the matrix ∑K
`=1,` 6=k Λk,MVH

k,MQ`QH
` Vk,MΛH

k,M,
straightforward manipulations lead to the following alternative expression for
the ASE is:

ASE ≈
K

∑
k=1

M

∑
q=1

log2

(
1 + NRNT

PT
MK |λ̃k,q|2

σ2
n +

PT
MK µk,q

)
. (4.25)

Eq. (4.25) confirms that with the clustered channel model scenario increasing
the number of antennas does not provide additional degrees of freedom but just
a SINR-gain proportional to the product NT NR. Now, Eqs. (4.9), (4.25) can be
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used to obtain an expression for the asymptotic GEE, i.e.,

GEE ≈

K

∑
k=1

M

∑
q=1

W log2

(
1 + NRNT

PT
MK |λ̃k,q|2

σ2
n +

PT
MK µk,q

)
ηPT + PTX,c + KPRX,c

. (4.26)

An interesting problem is the GEE maximization with respect to the transmitted
power, the number of transmit antennas and the number of receive antennas9.
While global GEE maximization with respect to NT, NR and PT may be cumber-
some, it is worth noting that a sequential iterative algorithm, wherein at each
iteration maximization with respect to one parameter only is performed, can be
easily conceived. Indeed, it is easily seen that the fraction in (4.26) is the ratio of a
concave function (with respect to the single variables NT, NR, and PT) over a lin-
ear one, and, thus, Dinkelbach’s algorithm may be readily applied to maximize
the ratio [68]. Rigorousy speaking, the variables PT is continuous, while NT, NR

are integer variables, so that the numerator of (4.26) is not a concave function
with respect to NT and NR. However, this problem is often addressed in litera-
ture considering NT and NR as continuous variables, solving the corresponding
problem and finally concluding that the quasiconcavity of the problem implies
that the optimal value for each variable is attained at one of the two closest in-
tegers [74], [75]. Further details on this for the sake of brevity are not provided.
However, in the section on the numerical results plots of the GEE versus PT,
providing an insight on the range of transmit power values that maximize the
system energy efficiency, will be reported.

4.4.2 CM-FD beamforming, uplink

Similar conclusions can be also drawn for the uplink scenario. Note that in
this case NT denotes the number of antennas on the user’s device and NR de-
notes the BS array size. For large number of antennas, now it holds DH

k H`Q` ≈
DH

k U`,MΛ`,M and the k-th user ASE is

ASEk ≈log2

∣∣∣∣∣∣∣IM+
PT,k

M

σ2
nIM+

K

∑
`=1
` 6=k

PT,`

M
DH

k U`,MΛ`,MΛH
`,MUH

`,MDk


−1

Λk,MΛH
k,M

∣∣∣∣∣∣∣ .

(4.27)
Substituting (4.27) into (4.10) it is finally possible to obtain an asymptotic expres-
sion for the GEE of the generic k-th user.

4.4.3 PZF-FD beamforming, downlink

For PZF-FD beamforming, the product HkQ` is an all-zero matrix whenever
k 6= `. As a consequence, RD,k ≈ σ2

nIM, and the asymptotic ASE can be shown

9Recall that PTX,c and PRX,c depend linearly on NT and NR, respectively.
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to be written as10

ASE ≈
K

∑
k=1

log2

∣∣∣∣IM +
PT

KMσ2
n

Λk,MΛH
k,M

∣∣∣∣ = K

∑
k=1

M

∑
q=1

log2

(
1 +

PT

MK
|λk,q|2

σ2
n

)
.

(4.28)
Using the normalized eigenvalues λ̃k,q = λk,q/

√
NT NR , ∀k, q, the following

equivalent expression is obtained:

ASE ≈
K

∑
k=1

M

∑
q=1

log2

(
1 +

NT NRPT

MK
|λ̃k,q|2

σ2
n

)
. (4.29)

The GEE is now written as:

GEE ≈

K

∑
k=1

M

∑
q=1

log2

(
1 +

NT NRPT

MK
|λ̃k,q|2

σ2
n

)
ηPT + PTX,c + KPRX,c

, (4.30)

and, also in this case, Dinkelbach’s algorithm can be successfully applied to per-
form alternative maximization of the GEE with respect to NT, NR and the trans-
mit power PT.

4.4.4 PZF-FD beamforming, uplink

Exploiting the fact that DH
k H` is zero whenever k 6= `, the asymptotic ASE for

the k-th user becomes:

ASEk ≈
M

∑
q=1

log2

(
1 +

NT NRPT,k

M
|λ̃k,q|2

σ2
n

)
. (4.31)

Substituting (4.31) into (4.10) it is finally possible to obtain an asymptotic expres-
sion for the GEE of the generic k-th user.

4.5 Asymptotic ASE and GEE analysis for the beam-steering
AN beamformers for large number of antennas

4.5.1 AN beamforming, downlink

The case of AN pre-coding and post-coding is now considered. As a preliminary
step to the analysis, it is convenient to recall that the ULA response in Eq. (4.17)
is a unit-norm vector, and that the inner product between two ULA responses of
length P and corresponding to incidence angles φ1 and φ2 is written as

fP(φ1, φ2) , aH(φ1)a(φ2) =
1
P

1− ejkd(sin φ1−sin φ2)P

1− ejkd(sin φ1−sin φ2)
. (4.32)

10This is an asymptotic expression since the noise enhancement effect is neglected (that is a
decreasing function of NT) induced by the nulling of the interference.
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The above inner product, that is denoted by fP(φ1, φ2), has a magnitude that,
for large P, vanishes as 1/P, whenever φ1 6= φ2. Let us now write the channel
matrix for user k as

Hk = γk

N

∑
i=1

αk,iar(φ
r
i,k)a

H
t (φ

t
i,k) = γkAk,rLkAH

k,t , (4.33)

namely the path-loss term has been lumped into the coefficients α·,·, and the
summation over the clusters and the rays has been compressed in just one sum-
mation, with N = NclNray. Additionally, Ak,r is an (NR×N)-dimensional matrix
containing on its columns the vectors ar(φr

1,k), . . . , ar(φr
N,k), Lk = diag(α1,k, . . . , αN,k),

and Ak,t is an (NT × N)-dimensional matrix containing on its columns the vec-
tors at(φt

1,k), . . . , at(φt
N,k)

11. It is also assumed, with no loss of generality, that the
paths are sorted in decreasing magnitude order, i.e., |α1,k| ≥ |α2,k| ≥ . . . ≥ |αN,k|.
In the following analysis, it is assumed that there are no collisions between ar-
rival and departure angles across users, an assumption that is usually verified
unless there are very close users. For the downlink scenario, the analog post-
coding and pre-coding matrices are written as

Dk = [ar(φr
1,k), . . . , ar(φr

M,k)] ,
Qk = [at(φt

1,k), . . . , at(φt
M,k)] ,

(4.34)

∀k, and they are actually submatrices of Ak,r and Ak,t, respectively. Define now
the following (M × N)-dimensional matrices: Fr

k,`,M , DH
k A`,r and Ft

k,`,M ,

QH
k A`,t Note that the (m, n)-th entry of the matrix Ft

k,`,M is fNT (φ
t
m,k, φt

n,`), while
the (m, n)-th entry of the matrix Fr

k,`,M is fNR(φ
r
m,k, φr

n,`). Equipped with this
notation, the ASE in (4.5) can be now expressed as follows:

ASE =
K

∑
k=1

log2

∣∣∣∣IM +
PT

KM
γ2

kR−1
D,k

Fr
k,k,MLkFt H

k,k,MFt
k,k,ML∗k Fr H

k,k,M

∣∣∣∣ , (4.35)

with

RD,k = σ2
nDH

k Dk +
PT

MK
γ2

k

K

∑
`=1
` 6=k

Fr
k,k,MLkFt H

`,k,MFt
`,k,ML∗k Fr H

k,k,M . (4.36)

In order to have an asymptotic expression of Eq. (4.35) for a large number of
antennas, it can be noted that the (M × N)-dimensional matrix Fr

k,`,M is such
that (a) for k 6= ` all its entries have a norm that for large NR vanishes as 1/NR;
while (b) for k = ` the M entries on the main diagonal are equal to 1 while all the
remaining terms again vanish in norm as 1/NR. A similar statement also applies
to the matrix Ft

k,`,M, of course with entries vanishing as 1/NT. Accordingly, the
following asymptotic formulas can be proven.

11In order to avoid an heavy notation, it is here dropped the dependence of the matrices Ak,r
and Ak,t on the propagation paths arrival and departure angles, respectively.
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(a) NT → +∞, finite NR: in this case the system becomes interference-free
and it is obtained

ASE ≈
K

∑
k=1

log2

∣∣∣∣∣IM +
PTγ2

k
KMσ2

n

(
DH

k Dk

)−1
Fr H

k,k,MLkL∗k Fr
k,k,M

∣∣∣∣∣ . (4.37)

(b) NR → +∞, finite NT: it holds now

ASE ≈
K

∑
k=1

log2

∣∣∣∣∣IM +
PTγ2

k
KM

R−1
D,k

(
LkFt H

k,k,MFt
k,k,ML∗k

)
(1:M,1:M)

∣∣∣∣∣ , (4.38)

with

RD,k = σ2
nIM +

PTγ2
k

MK

K

∑
`=1
` 6=k

(
LkFt H

`,k,MFt
`,k,ML∗k

)
(1:M,1:M)

. (4.39)

(c) NR, NT → ∞: finally it holds

ASE ≈
K

∑
k=1

M

∑
`=1

log2

(
1 +

PTγ2
k |αk,`|2

KMσ2
n

)
. (4.40)

It is easily seen that the above expression coincides with Eq. (4.28). Addi-
tionally, substituting Eqs. (4.37), (4.38) and (4.40) into the GEE definition
(4.9), asymptotic expressions can be readily obtain for the system GEE,
and, again, these can be maximized with respect to PT by using Dinkel-
bach’s algorithm.

Consider now the special case M = 1; the pre-coding and post-coding matrices
are actually column vectors, and are expressed as

Dk = ar(φ
r
1,k) , Qk = at(φ

t
1,k) , ∀k . (4.41)

Using the above expressions, it is readily seen that Eq. (4.5) becomes

ASE =
K

∑
k=1

log2

∣∣∣∣1 + PT

M
R−1

D,k

∣∣∣aH
r (φ

r
1,k)Hkat(φ

t
1,k)
∣∣∣2∣∣∣∣ . (4.42)

The interference covariance matrix RD,k is now just a scalar, and is written as

RD,k = σ2
n +

K

∑
`=1
` 6=k

PT

KM
γ2

k

∣∣∣∣∣αk,1 fNT (φ
t
1,k, φt

1,`) +
N

∑
i=2

αk,i fNR(φ
r
1,k, φr

i,k) fNT (φ
t
i,k, φt

1,`)

∣∣∣∣∣
2

.

(4.43)
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Substituting Eq. (4.43) into Eq. (4.42) provides

ASE =
K

∑
k=1

log2


1 +

PT
KM

γ2
k

∣∣∣∣∣αk,1+
N

∑
i=2

αk,i fNR(φ
r
1,k, φr

i,k) fNT (φ
t
i,k, φt

1k)

∣∣∣∣∣
2

σ2
n +

K

∑
`=1
` 6=k

PT
KM

γ2
k

∣∣∣∣∣αk,1 fNT (φ
t
1,k, φt

1,`)+
N

∑
i=2

αk,i fNR(φ
r
1,k, φr

i,k) fNT (φ
t
i,k, φt

1,`)

∣∣∣∣∣
2


.

(4.44)

Eq. (4.44) provides the exact downlink ASE expression for finite values of NT

and NR in the case of analog pre-coding and decoding, as a function of the re-
flection coefficients α·,· and of the departure and arrival angles. In order to study
its asymptotic values for large NR and NT, recall that γ2

k = NRNT/N.

(d) NT → +∞, finite NR: in this case the following holds

ASE ≈
K

∑
k=1

log2

(
1 +

PT

KM
|αk,1|2NT NR

Nσ2
n

)
. (4.45)

It is seen that the ASE grows linearly with the number of users, logarithmi-
cally with the product NT NR, and the system is asymptotically interference-
free and noise-limited. It can be also verified that the limiting ASE in Eq.
(4.45) tends to the limiting ASE reported in Eq. (4.29), which holds for the
case of FD beamforming, thus confirming the optimality of the considered
analog beamforming in the limit of large number of transmit antennas.

(e) NR → +∞, finite NT: in this case the following holds

ASE ≈
K

∑
k=1

log2

1 +

PT

KM
NRNT

N
|αk,1|2

σ2
n +

K

∑
`=1
` 6=k

PT

KM
NRNT

N
∣∣ fNT (φ

t
1,k, φt

1,`)
∣∣2 |αk,1|2



→
K

∑
k=1

log2

1 +
1

K

∑
`=1
` 6=k

∣∣ fNT (φ
t
1,k, φt

1,`)
∣∣2

 .

(4.46)
The ASE converges towards an asymptote that is independent of the num-
ber of receive antennas, while the system is now noise-free and interference-
limited. The ASE now increases logarithmically with N2

T, and there is no
longer a linear increase of the ASE in the number of users. In particu-

lar, since for large K the quantity
K

∑
`=1
` 6=k

∣∣ fNT (φ
t
1,k, φt

1,`)
∣∣2 converges to (K −
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1)E
[∣∣∣ fNT (φ

t
1,k, φt

1,`)
∣∣∣2], it can be shown that

lim
NR,K→+∞

ASE =
(ln 2)−1

E

[∣∣∣ fNT (φ
t
1,k, φt

1,`)
∣∣∣2] . (4.47)

Note that the above limiting value increases with N2
T, while, for large K,

the ASE per user vanishes.

(f) NR, NT → ∞: in this case the same results as in 4.5.1(d) hold.

4.5.2 AN beamforming, uplink

For the uplink scenario, using the notation previously introduced, the k-th user
ASE can be shown to be expressed as

ASEk = log2

∣∣∣∣IM +
PT,k

M
γ2

kR−1
U,k

Fr
k,k,MLk Ft H

k,k,MFt
k,k,ML∗k Fr H

k,k,M

∣∣∣ , (4.48)

with

RU,k = σ2
nDH

k Dk +
K

∑
`=1
` 6=k

PT,`

M
γ2
`Fr

k,`,ML`Ft H
`,`,MFt

`,`,ML∗`Fr H
k,`,M . (4.49)

Asymptotic approximations for the k-th user ASE are now provided.

(a) NR → +∞, finite NT: in this case the system becomes interference-free
and the following holds:

ASEk ≈ log2

∣∣∣∣∣IM +
PT,kγ2

k
Mσ2

n

(
LkFt H

k,k,MFt
k,k,ML∗k

)
(1:M,1:M)

∣∣∣∣∣ . (4.50)

(b) NT → +∞, finite NR:

ASEk ≈ log2

∣∣∣∣∣IM +
PT,kγ2

k
M

R−1
U,k

Fr
k,k,MLkL∗k Fr H

k,k,M

∣∣∣∣∣ , (4.51)

with

RU,k = σ2
n(D

H
k Dk) +

K

∑
`=1
` 6=k

PT,`γ
2
`

M
Fr

k,`,ML`L∗`Fr H
k,`,M . (4.52)

(c) NR, NT → ∞: finally, the following holds

ASEk ≈
M

∑
`=1

log2

(
1 +

PT,kγ2
k |αk,`|2

Mσ2
n

)
. (4.53)

The above equation can be seen to be equal to Eq. (4.31).
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Similarly to the downlink, also for the uplink, the case M = 1 permits skipping
the matrix notation and obtaining more insightful formulas. For M = 1 the pre-
coding and post-coding vectors are still given by Eq. (4.41), and the k-th user
ASE in Eq. (4.7), after some algebra, is written as

ASEk = log2


1+

PT,k

M
γ2

k

∣∣∣∣∣αk,1 +
N

∑
i=2

αk,i fNR(φ
r
1,k, φr

i,k) fNT (φ
t
i,k, φt

1k)

∣∣∣∣∣
2

σ2
n+

K

∑
`=1
` 6=k

PT,`

M
γ2
`

∣∣∣∣∣α`,1 fNR(φ
r
1,k, φr

1,`)+
N

∑
i=2

α`,i fNT (φ
t
i,`, φt

1,`) fNR(φ
r
1,k, φr

i,`)

∣∣∣∣∣
2


.

(4.54)

Eq. (4.54) provides the downlink ASE expression for finite values of NT and
NR in the case of analog pre-coding and decoding, as a function of the reflection
coefficients α·,· and of the departure and arrival angles. In order to study its
asymptotic values for large NR and NT, recall that γ2

k = NRNT/N.

(d) NR → +∞, finite NT: in this case the following expression holds

ASEk → log2

(
1 +

PT,k

M
|αk,1|2NT NR

Nσ2
n

)
. (4.55)

It is seen that the total ASE grows linearly with the number of users, log-
arithmically with the product NT NR , and the system is asymptotically
interference-free and noise-limited. It can be also verified that the limit-
ing ASE in Eq. (4.55) tends to coincide with the limiting ASE reported in
Eq. (4.29), which holds for the case of FD beamforming, thus confirming
the optimality of the considered analog beamforming in the limit of large
number of transmit antennas.

(e) NT → +∞, finite NR: in this case the following relation holds

ASEk ≈ log2

1 +

PT,k

M
NRNT

N
|αk,1|2

σ2
n +

K

∑
`=1
` 6=k

PT,`

M
NRNT

N
∣∣ fNR(φ

r
1,k, φr

1,`)
∣∣2 |α`,1|2



→ log2

1 +
|αk,1|2

K

∑
`=1
` 6=k

|α`,1|2
∣∣ fNR(φ

r
1,k, φr

1,`)
∣∣2

 .

(4.56)
The ASE converges towards an asymptote that is independent of the num-
ber of transmit antennas, while the system is now noise-free and interference-
limited. The ASE now increases logarithmically with N2

R. For large K, the
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following holds:

K

∑
`=1
` 6=k

|α`,1|2
∣∣ fNR(φ

r
1,k, φr

1,`)
∣∣2 ≈ (K− 1)E

[
|α`,1|2

∣∣ fNR(φ
r
1,k, φr

1,`)
∣∣2] ,

and also in this case the ASE per user vanishes.

(f) NR, NT → ∞: in this case the same results as in 4.5.2(d) hold.

4.6 Numerical results

Simulation results showing the ASE and the GEE for a single-cell mm-Wave
MIMO system are now provided; it is assumed K = 10 users use the same fre-
quency band with random locations at a maximum distance 100 m from the BS.
The parameters for the generation of the matrix channels are reported in [32]
for the “street canyon model”, with Ncl = 2 and Nray = 20. The carrier fre-
quency is fc = 73 GHz, the used bandwidth is W = 500 MHz12, the noise power
σ2

n = FN0W, with receiver noise figure F = 3 dB and N0 = −174 dBm/Hz. All
the considered low-complexity beamformers have been realized using a number
of RF chains equal to the multiplexing order M (and KM at the BS). The results
come from an average over 500 independent realizations of users’ locations and
propagation channels.
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FIGURE 4.3: Plot of downlink ASE and GEE versus NT with
NR = 30, K = 10, M = 3 and PT = 0 dBW.

12Standardization bodies have not yet set the mm-Wave carrier frequencies that will be really
used in practice. However, the considered values can be deemed as representative of a typical
mm-Wave link for wireless cellular communications.



70 Chapter 4. Doubly massive MIMO mm-Wave systems

10 20 30 40 60 80 100

N
R

0

20

40

60

80

100

A
S

E
 [

b
it

/s
/H

z
]

CM-FD

CM-HY

PZF-FD

PZF-HY

AN

SW+PHSH

SW

10 20 30 40 60 80 100

N
R

0

0.5

1

1.5

2

2.5

3

3.5

G
E

E
 [

b
it

/J
o
u

le
]

10
7

FIGURE 4.4: Plot of downlink ASE and GEE versus NR with
NT = 50, K = 10, M = 3 and PT = 0 dBW.

First of all, results as a function of the number of transmit and receive antennas
are reported. Figs. 4.3 and 4.4 report the downlink ASE and the GEE versus
the number of transmit antennas (assuming NR = 30) and versus the number
of receive antennas (assuming NT = 50), respectively, assuming PT = 0 dBW
and multiplexing order M = 3. Results corresponding to all the previously de-
tailed beamforming structures are reported. Inspecting the figures, it is seen that
the best performing beamforming structure is the PZF-FD, both in terms of ASE
and of GEE13. This last conclusion is quite surprising, since it shows that lower
complexity structures, although necessary for obvious practical considerations,
actually are less energy efficient (from a communication physical layer perspec-
tive) than FD structures. Results also show that the SW structure achieves quite
unsatisfactory performance; moreover, for low values of NT the CM-FD and its
HY approximation outperform the PZF-FD and PZF-HY solutions. From Fig. 4.4
it can be also seen that while the ASE grows with the number of antennas, the
GEE instead exhibits a maximum: in particular, it is seen that, for the considered
scenario, the PZF-FD beamformer achieves its maximum GEE for NT ≈ 90.

13Note however that for small values of NT the PZF beamforming structures achieve infe-
rior performance with respect to the other solutions due to the reduced dimensionality of the
interference-free subspace.
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FIGURE 4.5: Plot of asymptotic downlink ASE formulas versus
NT and NR, with K = 10, M = 3 and PT = 0 dBW.
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FIGURE 4.6: Plot of asymptotic uplink ASE per user formulas
versus NT and NR, with K = 10, M = 3 and PT = 0 dBW.

Figs. 4.5 and 4.6 are devoted to the validation of the derived asymptotic for-
mulas in the large number of antennas regime. In particular, the subplots in
Fig. 4.5 show the downlink ASE, versus NT (assuming NR = 30) and versus NR

(assuming NT = 50), for the CM-FD, PZF-FD and AN beamformers, and their
asymptotic approximation reported in Eqs. (4.25), (4.29), (4.37), and (4.38). The
subplots in Fig. 4.6, instead, refer to the uplink and report the ASE per user,
again versus NT (assuming NR = 30) and versus NR (assuming NT = 50), for
the CM-FD, PZF-FD and AN beamformers, and their asymptotic approximation
reported in Eqs. (4.27), (4.31), (4.50), and (4.51). Results fully confirm the effec-
tiveness of the found asymptotic formulas, that may turn out to be useful in the
derivation of simplifies resource allocation strategies.
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FIGURE 4.7: Plot of downlink ASE and GEE versus PT for a sys-
tem with NT = 100, NR = 30, K = 10 and M = 1.
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FIGURE 4.8: Plot of downlink ASE and GEE versus PT for a sys-
tem with NT = 100, NR = 30, K = 10 and M = 3.

Figs. 4.7 and 4.8, finally, report the downlink system ASE and GEE versus the
transmit power, for the case of multiplexing order M = 1 and M = 3. Here,
a system with NT = 100 antennas at the BS and NR = 30 antennas at the MSs
has been considered. Also in this case the number of users is K = 10. Results
show a trend that has already been found elsewhere (e.g., in [76]); in particular,
while the ASE grows with the transmit power (at least in the considered range
of values), the GEE exhibits instead a maximum around 0 dBW. This behavior is
explained by the fact that for large values of the transmit power, the numerator
in the GEE grows at a slower rate than the denominator of the GEE, and so
the GEE itself decreases. From an energy-efficiency perspective, increasing the
transmit power beyond the GEE-optimal point leads to moderate improvements
in the system throughput at the price of a much higher increase in the consumed
power.
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Chapter 5

User-centric approach to cell-free
massive MIMO networks

Referred articles published in the IEEE Wireless Communications Letters 2017, in
the Proc. of WSA 2017; 21th ITG International Workshop on Smart Antennas and in
the Proc. of 2018 15th International Symposium on Wireless Communication Systems
(ISWCS).

5.1 Introduction

As discussed in Chapter 1, massive MIMO is a promising wireless access tech-
nology that can provide high throughput with simple signal processing for 5G
and beyond-5G networks [1]. Massive antenna at the BSs can be deployed in co-
located or distributed setups. In co-located massive MIMO all the antennas are
located in a compact area and this architecture has the advantage of low back-
haul requirements. In distributed massive MIMO systems, instead, the antennas
are spread out over a large area; this architecture has the advantage of efficiently
exploiting mascroscopic diversity against the shadow fading, so these systems
can potentially offer a much higher probability of coverage than collocated mas-
sive MIMO [77], at the cost of increased backhaul requirements. Additionally,
the distributed layout permits alleviating the cell-edge problem, since it consid-
erably lowers the probability that a user is situated far from every system AP,
permitting thus to achieve a better fairness and service uniformity across mobile
users. In [78], the viability of using distributed antennas in multi-cell systems
for massive MIMO on the uplink is investigated for a particular spatial corre-
lation channel model. In [79] the authors focus on the downlink of a multicell
distributed antenna system assuming that only the slowly-varying large-scale
channel state is required at the transmitter and they explore the performance
gain that can be achieved by coordinated transmissions for a virtual MIMO sys-
tem. One of the drawbacks of such virtual MIMO systems is the heavy back-
haul requirements, since, besides data symbols, also the channel estimates and
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the beamforming schemes are to be shared with the CPU. Recently, a CF mas-
sive MIMO architecture has been introduced where a very large number of dis-
tributed single-antenna APs serve many single-antenna MSs in the same time-
frequency resource [35], [80]. All APs are connected to a CPU and cooperate via
a backhaul network, serving all the MSs via TDD operation, so that in a CF mas-
sive MIMO system there are actually no cells or cell boundaries. The CF concept
thus can be interpreted as a scalable and lower-complexity implementation of
distributed massive MIMO or of ultra-dense AP deployments with cloud-based
radio access networks.
The distinguishing features of the CF architecture are the following:

(a) the time division duplex protocol is used to exploit channel reciprocity on
the uplink and downlink;

(b) uplink channel estimates are computed locally at each AP and exploited
locally, which means that they are not sent on the backhaul link;

(c) beamformers to be used at the APs are computed locally and not at the
CPU;

(d) the backhaul is used to send data symbols on the downlink and sufficient
statistics on the uplink to perform centralized uplink data decisions; how-
ever, it is not used to share the channel estimates and/or the beamformers.

CF massive MIMO systems have received increasing attention in the recent past.
The authors of [35] show that the CF approach provides better performance than
a small-cell system in terms of 95%-likely per-user throughput, thus confirm-
ing that the scheme is effective in alleviating the cell-edge user problem and in
providing a more uniform service across users. CF massive MIMO is a recent
research topic that however has been gaining a strong momentum in the last
few years. The paper [81] has shown that some performance improvement can
be obtained in low density networks by using downlink pilots, while the paper
[82], instead, analyzes the performance improvements granted by the use of a
zero-forcing precoder in the downlink: although the gains are from five to ten-
fold, the zero-forcing precoder requires centralized computations at the CPU
and increased backhaul overhead. Zero-forcing pre-coding is again considered
in [83], wherein it is coupled with a power control algorithm aimed at maximiz-
ing the energy efficiency of CF massive MIMO considering the backhaul power
consumption and the imperfect CSI. In [84], the uplink performance of CF sys-
tems is investigated using MMSE processing for the case in which the energy
efficiency of CF massive MIMO is to be maximized considering the backhaul
power consumption and the imperfect CSI. The energy-efficiency of CF massive
MIMO systems is also considered in [85], which proposes a power allocation al-
gorithm aiming at maximizing the total energy efficiency, subject to a per-user



5.1. Introduction 75

spectral efficiency constraint and a per-AP power constraint. The power allo-
cation strategies here are simplified by the fact that single-antenna transceivers
are considered both at the APs and at the MSs, which permit skipping log |(·)|
functions in the achievable rate formulas. In order to reduce the backhaul over-
head, the paper [86] considers instead a coded CF massive MIMO system, and
investigates the performance of a compute & forward mechanism for the uplink,
wherein each AP attempts to use an integer linear combination of the codewords
to represent the scaled received signal to be sent to the CPU. The finite backhaul
capacity is also considered in [87], which studies the case in which quantized
version of the estimated channel and the quantized received signal are available
at the CPU, and the case when only the quantized version of the combined sig-
nal with MR post-coding detector is available at the CPU. It should be noted
that all the cited papers consider the case in which both the APs and the MSs are
equipped with a single-antenna, the only exception being references [85], [87],
which consider multiple antennas at the APs. The extension of the CF massive
MIMO architecture to the case in which also the MSs are equipped with multiple
antennas is not trivial since no channel estimation is performed at the MSs, and
so no channel-dependent beamforming scheme can be used there.
One critical point of the originally formulated version of the CF massive MIMO
systems [35], [80] is the fact that all the APs serve all the MSs in the system.
This assumption may lead to some inefficiencies in the system as the size of the
considered area grows: indeed, it appears clearly pointless to waste power and
computational resources at an AP to decode MSs that are very far and that are
presumably received with a very low SINR. To overcome this limitation, a UC
distributed massive MIMO system has been introduced, still for single-antenna
APs and MSs, in [88]; in the UC approach, each MS is served not by all the APs
in the system, but just by the ones that are in the neighborhood. Similar APs
selection strategies, a received-power-pased selection and a largest-large-scale-
fading-based selection, exploiting a partial knowledge of the channel statistic,
are proposed in reference [85]. The UC approach, while being much simpler
than the CF one and less hungry of backhaul bandwidth, was shown in [88]
to provide a larger achievable rate-per-user to the majority of the MSs in the
system.
Following on such a track, and building upon the conference papers [89], [90],
this chapter of the thesis provides a thorough comparison of the UC and CF
approaches, considering the case in which the MSs and the APs are equipped
with multiple antennas. In the UC approach, each AP communicates only with
a pre-assigned number of MSs, to which it has best link conditionos. The over-
all complexity of the system is thus lower than CF, since, every AP has to serve
only a pre-assigned number of MSs, and, moreover, a reduced amount of data
is to be sent on the backhaul links to the CPU. In this chapter of the thesis a
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beamforming scheme that does not require channel estimation at the MSs is in-
troduced; rather the proposed scheme exploits the channel hardening effect due
to the large number of antennas in order to perform coherent data reception
at the MSs. Moreover, a simple and low complexity pilot matched (PM) chan-
nel estimation strategy implemented at each APs is proposed and maximum-
length-sequences (pseudo-noise) are assumed as pilots at each MS in the uplink
training phase. Channel inversion beamforming is proposed here as a general-
ization of the conjugate beamforming applied in the single-antenna case, and,
again, as the in the originally formulated version of the CF massive MIMO, no
channel estimates and beamforming matrices are propagated through the back-
haul network. Furthermore, in this chapter of the thesis two power allocation
strategies for the uplink and the downlink are proposed, both for the CF and
the UC case. The power allocation policy follows the APs selection in the UC
case, i.e., only the power of the APs involved in the UC communication is allo-
cated. The first power allocation strategy is a sum-rate maximizing power allo-
cation one, aimed at maximizing performance of the system in terms of overall
data-rate and the second strategy is a minimum-rate maximizing power alloca-
tion one, aimed at maximizing performance of the system in terms of fairness.
Both the optimization problems have non-concave objective functions, which
makes their solution challenging. In the proposed power allocation strategies it
is here used the successive lower-bound maximization, that merges the tools of al-
ternating optimization and of the sequential convex programming, in order to solve
the two optimization problems and to obtain the power allocation algorithms
detailed in the chapter of the thesis. Additionally, advanced signal processing
techniques for uplink channel estimation, uplink data detection and downlink
pre-coding are proposed in this chapter. In particular, with regard to channel
estimation, a linear MMSE channel estimation procedure is detailed. For uplink
data detection, a local SIC scheme is proposed, in the sense that partial inter-
ference cancellation is implemented at the APs by using locally available infor-
mation only, so that in the sufficient statistics sent to the CPU the interference
has already been pruned without sending all the channel estimates at the CPU.
Finally, with regard to downlink data transmission, a local PZF beamforming
architecture is introduced, where the beamformer is computed at each AP and
synthesized by using locally available information obtained during the training
phase, and exploiting the availability of multiple antennas at the AP. The results
obtained with the two power allocation strategies proposed in the chapter of the
thesis are contrasted with the case of uniform power allocation, i.e., all the APs
and the MSs transmit data with the maximum power available, and the CF and
UC approaches with PM channel estimation and with perfect CSI are condered.
Results will show that the UC approach generally outperforms the CF one, es-
pecially on the uplink. Regarding the advanced signal processing techniques,
numerical results show the effectiveness of the proposed solutions; in particular
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the use of SIC on the uplink can more than double the median rate in a typical
setting compared to the simple MR post-coding in the uplink.
The remainder of this chapter is organized as follows. Next Section contains
the description of the considered system model. Section 5.3 is devoted to the
illustration of the comunication protocol, composed by uplink training, down-
link data transmission and uplink data transmission, for both CF and UC ap-
proaches. In Section 5.4 the performance measures and the two power control
strategies proposed for the downlink are reported. Section 5.5 contains the two
power control strategies proposed for the uplink. Section 5.6 details the pro-
posed advanced signal processing techniques and Section 5.7 contains the nu-
merical results.

FIGURE 5.1: UC approach to CF massive MIMO system.

5.2 System model

In this chapter an area with K MSs and M APs is considered (see Fig. 5.1), where
MSs and APs are randomly located. The M APs are connected by means of a
backhaul network to a CPU wherein data-decoding is performed. In accordance
to the approach of [35], [80], all communications take place on the same fre-
quency band; uplink and downlink are separated through TDD; the coherence
interval is thus divided into three phases: (a) uplink channel estimation, (b)
downlink data transmission, and (c) uplink data transmission. In phase (a) the
MSs send pilot data in order to enable channel estimation at the APs. In phase
(b) APs use channel estimates to perform CM beamforming and send data sym-
bols on the downlink; while in the CF architecture APs send data to all the MSs
in the system, in the UC approach APs send data only to a subset of the MSs
in the system. Finally, in phase (c) MSs send uplink data symbols to the APs;
while in the CF architecture all the APs participate to the decoding of the data
transmitted by all the MSs, in the UC approach APs just decode the data from
the nearby MSs. The procedure for the selection of the MSs to serve will be spec-
ified in the following section. No pilots are transmitted on the downlink and no
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channel estimation is performed at the MSs: data decoding takes place on the
downlink relying on the fact that in TDD the downlink channel is the reciprocal
of the uplink channel14 and on the channel hardening effect due to many trans-
mitting APs. In the following, NMS and NAP denote the number of antennas at
the MSs and at the APs, respectively.

• Channel model The (NAP × NMS)-dimensional matrix Gk,m denotes the
channel between the k-th MS and the m-th AP:

Gk,m =
√

βk,mHk,m , (5.1)

with βk,m a scalar coefficient modeling the channel shadowing effects and
Hk,m an (NAP × NMS)-dimensional matrix whose entries are i.i.d CN (0, 1)
random variables (RVs). For the path loss and the shadow fading corre-
lation models, the ones reported in [35] are used in this thesis. The large
scale coefficient βk,m in Eq. (5.1) models the path loss and shadow fading,
according to Eq. (3.2), where the path loss PL and the shadow fading co-
efficient z between the m-th AP and the k-th user are replaced with PLk,m

and zk,m, respectively. For the path loss, the three slope path loss model in
Eq. (3.3) is used, where d is replaced with dk,m, that denotes the distance
between the m-th AP and the k-th user (expressed in km). In real-world
scenarios, transmitters and receivers that are in close vicinity of each other
may be surrounded by common obstacles, and hence, the shadow fading
RVs are correlated; for the shadow fading coefficient it is thus used a model
with two components [92]

zk,m =
√

δam +
√

1− δbk, m = 1, . . . , M, k = 1, . . . , K, (5.2)

where am ∼ N (0, 1) and bk ∼ N (0, 1) are independent RVs, and δ, 0 ≤
δ ≤ 1 is a parameter. The covariance functions of am and bk are given by:

E [amam′ ] = 2−
dAP(m,m′)

ddecorr E [bkbk′ ] = 2−
dMS(k,k′)

ddecorr , (5.3)

where dAP(m,m′) is the geographical distance between the m-th and m′-th
APs, dMS(k,k′) is the geographical distance between the k-th and the k′-th
MSs. The parameter ddecorr is a decorrelation distance which depends on
the environment, typically this value is in the range 20-200 m.

5.3 Communication protocol for the CF and UC approaches

As already discussed, the communication procedure is made of three different
phases, (a) uplink training, (b) downlink data transmission, and (c) uplink data

14According to [35], the channel reciprocity is also ensured by perfect hardware chain calibra-
tion, whose feasibility has been recently shown in [91].
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transmission. The overall duration of these three phases must not exceed the
channel coherence time, thus implying that these three phases must be sequen-
tially repeated with a frequency larger than the channel Doppler spread.

5.3.1 Uplink training

During this phase the MSs send uplink training pilots in order to permit chan-
nel estimation at the APs. This phase is the same for both the UC and CF ap-
proaches. The length (in samples) of the channel coherence time is denoted by
τc , and the length (in samples) of the uplink training phase is denoted by τp, of
course τp < τc. Denote by Φk ∈ CNMS×τp the pilot sequence sent by the k-th MS,
and assume that the rows of Φk have unit norm. The signal received at the m-th
AP in the n-th signaling time is represented by the following NAP-dimensional
vector

ym(n) =
K

∑
k=1

√
pkGk,mΦk(:, n) + wm(n) , (5.4)

with
√

pk the user k transmit power on each antenna during the training phase.
Collecting all the observable vectors ym(n), for n = 1, . . . , τp into the (NAP× τp)-
dimensional matrix Ym, it is easy to show that

Ym =
K

∑
k=1

√
pkGk,mΦk + Wm . (5.5)

In the above equation the matrix Wm is (NAP× τp)-dimensional and contains the
thermal noise contribution and out-of-cell interference at the m-th AP; its entries
are assumed to be i.i.d. CN (0, σ2

w) random variables. Based on the observable
matrix Ym, the m-th AP performs estimation of the channel matrices {Gk,m}K

k=1.
Simple PM single-user channel estimation is here assumed, for the sake of sim-
plicity (more sophisticated channel estimation schemes, based, e.g., on linear
minimum mean square error processing, might however be considered) and the
knowledge of MSs transmit powers {pk}K

k=1 is assumed. The estimate, Ĝk,m say,
of the channel matrix Gk,m is

Ĝk,m =
1
√

pk
YmΦH

k = Gk,mΦkΦH
k +

K

∑
j=1
j 6=k

√
pj

pk
Gj,mΦjΦ

H
k +

1
√

pk
WmΦH

k . (5.6)

Estimation (5.6) must be made in all the APs (i.e., for all the values of m =

1, . . . , M) for all the values of k = 1, . . . , K. If the rows of the matrices Φ1, . . . , ΦK

are pairwisely orthogonal (i.e., ΦkΦj = INMS δi,k, for all i, k), then Eq. (5.6) simpli-
fies to

Ĝk,m =
1
√

pk
YmΦH

k = Gk,m +
1
√

pk
WmΦH

k , (5.7)

and thermal noise is the only disturbance impairing the channel estimate. A
necessary condition for this to happen is however τp ≥ KNMS, a relation that



80 Chapter 5. User-centric approach to cell-free massive MIMO networks

usually is not verified in practical scenarios due to the fact that τp must be a
fraction of the channel coherence length. As a consequence, almost orthogonal
pilot sequences are usually employed. The pilot sequences assigned to each
user are assumed mutually orthogonal, so that ΦkΦH

k = INMS , while, instead,
pilot sequences from different users are non-orthogonal. As a consequence, Eq.
(5.6) is actually expressed as:

Ĝk,m = Gk,m +
K

∑
j=1
j 6=k

√
pj

pk
Gj,mΦjΦ

H
k +

1
√

pk
WmΦH

k , (5.8)

which clearly shows that the channel estimate is degraded not only by noise, but
also by the pilots from the other users, i.e., the pilot contamination phenomenon.

5.3.2 Downlink data transmission

After each AP has obtained estimates of the channel matrix from all the MSs
in the system, the downlink data transmission phase begins. The APs treat
the channel estimates as the true channels, and channel inversion beamform-
ing is performed to transmit data to the MSs. The objective of this beamforming
scheme is to ensure that the MSs will be able to receive data without information
on the channel state. Denote by Pk the multiplexing order (i.e., the number of
simultaneous data-streams) for user k, and by xDL

k (n) the Pk-dimensional unit-
norm vector containing the k-th user data symbols to be sent in the n-th sample
time, let Lk = IPk ⊗ 1NMS/Pk be the channel independent beamformer to be used
at each MS. Basically, this corresponds to partitioning the MS antennas in as
many disjoint subsets as the multiplexing order, and to use all the antennas in
the same subset to transmit and receive one data stream. Note that this channel
independent beamforming at the MSs, based on its simple definition, remains
the same in the two CF and UC approaches. The downlink precoder at the m-th
AP for the k-th MS is expressed as

Qk,m = Ĝk,m

(
ĜH

k,mĜk,m

)−1
Lk . (5.9)

It is easy to realize that using the above precoder at the AP, coupled with the
use of the channel independent beamformer Lk at the MS, permits inverting
the channel effect and perfectly recovering the transmitted symbols, in the ideal
case of perfect channel knowledge, LH

k GH
k,mQk,m = IPk . Note also that comput-

ing the beamformers in Eq. (5.9) requires a computational effort proportional
to NAPN3

MS, which is easily manageable since in the considered distributed en-
vironment, and for the case of sub-6 GHz frequencies, both NAP and NMS are
small numbers.

• CF massive MIMO architecture
In the CF architecture all the APs communicate with all the MSs in the
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systems, so the signal transmitted by the m-th AP in the n-th interval is the
following NAP-dimensional vector

scf
m(n) =

K

∑
k=1

√
ηDL,cf

k,m Qk,mxDL
k (n) , (5.10)

with ηDL,cf
k,m a scalar coefficient ruling the power transmitted by the m-th AP

for the k-th MS. The generic k-th MS receives signal contributions from all
the APs; the observable vector is expressed as

rcf
k (n) =

M

∑
m=1

GH
k,mscf

m(n) + zk(n)

=
M

∑
m=1

√
ηDL,cf

k,m GH
k,mQk,mxDL

k (n)

+
M

∑
m=1

K

∑
j=1
j 6=k

√
ηDL,cf

j,m GH
k,mQj,mxDL

j (n) + zk(n) .

(5.11)

In Eq. (5.11), the NMS-dimensional vector zk(n), modelled as i.i.d. CN (0, σ2
z )

random variables, represents the thermal noise and out-of-cluster interfer-
ence at the k-th MS. Based on the observation of the vector rcf

k (n), a soft
estimate of the data symbols xDL

k (n) is obtained at the k-th MS as

x̂DL,cf
k (n) = LH

k rcf
k (n) . (5.12)

Note once again that no channel estimation is performed at the MSs; the
beamformers Lk have a fixed structure independent of the channel real-
ization, so that the entries of the observation vector are partitioned in Pk

groups and a coherent sum is made within each group.

• UC massive MIMO architecture
In the UC approach, the APs communicate only with the closest MSs. In
order to define a measure for the closeness of the MSs, several procedures
can be conceived. One possible strategy is that each AP computes the av-
erage Frobenius norm of the estimated channels for all the MSs, i.e.,

Ḡm =
1
K

K

∑
k=1
‖Ĝk,m‖F, (5.13)

and will serve only the APs whose channel estimates have a Frobenius
norm larger than the computed average value. Another possible approach
is that each AP sorts these estimates in descending Frobenius norm order
and serves only the N MSs with the strongest channel, with N a proper
design parameter. In this chapter of the thesis numerical results using this
latter strategy are presented. The set of MSs served by the m-th AP is
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denoted by K(m). Given the sets K(m), for all m = 1, . . . , M, it is possible
to define the setM(k) of the APs that communicate with the k-th user:

M(k) = {m : k ∈ K(m)}. (5.14)

So, in this case, the signal transmitted by the m-th AP in the n-th interval
is the NAP-dimensional vector

suc
m (n) = ∑

k∈K(m)

√
ηDL,uc

k,m Qk,mxDL
k (n) , (5.15)

with ηDL,uc
k,m , again, a scalar coefficient ruling the power transmitted by the

m-th AP. The generic k-th MS receives signal contributions from all the
APs; the observable vector is expressed as

ruc
k (n) =

M

∑
m=1

GH
k,msuc

m (n) + zk(n)

= ∑
m∈M(k)

√
ηDL,uc

k,m GH
k,mQk,mxDL

k (n)

+
K

∑
j=1
j 6=k

∑
m∈M(j)

√
ηDL,uc

j,m GH
k,mQj,mxDL

j (n) + zk(n) .

(5.16)

In Eq. (5.16), the NMS-dimensional vector zk(n) represents the thermal
noise and out-of-cluster interference at the k-th MS, and is modeled as i.i.d.
CN (0, σ2

z ) RVs. Based on the observation of the vector ruc
k (n), a soft esti-

mate of the data symbols xDL
k (n) is obtained at the k-th MS as

x̂DL,uc
k (n) = LH

k ruc
k (n) . (5.17)

5.3.3 Uplink data transmission

The final phase of the communication protocol consists of the uplink data trans-
mission. In this phase the beamformer Lk is used as the precoder at the k-th
MS, while the beamformer in Eq. (5.9) is used at the m-th AP as the postcoder
combiner for the signal from the k-th MS. Since the MSs do not perform channel
estimation, they just send their data symbols using the already defined trivial
beamformer Lk. The Pk-dimensional data vector to be transmitted by the k-th
user in the n-th sample time is denoted by xUL

k (n). The signal received at the
m-th AP in the n-th time sample is the NAP-dimensional vector

ȳm(n) =
K

∑
k=1

√
ηUL

k Gk,mLkxUL
k (n) + wm(n) , (5.18)

with ηUL
k is the uplink transmit power of the k-th MS.

• CF massive MIMO architecture
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In the case of CF approach, all the APs participate to the decoding of the
data sent by all the MSs. The m-th AP, thus, forms, for each k = 1, . . . , K,
the following statistics

ỹm,k(n) =
(

LH
k ĜH

k,mĜk,mLk

)−1
LH

k ĜH
k,mȳm(n) = G̃k,mȳm(n), (5.19)

where G̃k,m is the following Pk × NAP-dimensional matrix:

G̃k,m =
(

LH
k ĜH

k,mĜk,mLk

)−1
LH

k ĜH
k,m . (5.20)

The vectors ỹm,k(n), for all k = 1, . . . , K, are then sent to the CPU via the
backhaul link; the CPU, finally, forms the following soft estimates of the
data vectors transmitted by the users:

x̂UL,cf
k (n) =

M

∑
m=1

ỹm,k(n) , k = 1, . . . , K . (5.21)

Note that only the soft estimates ỹm,k(n) are to be transmitted from the
APs to the CPU, while channel estimates transmission is not required.

• UC massive MIMO architecture
In this case, the signal transmitted by the k-th MS is decoded only by the
APs in the setM(k) . Otherwise stated, the m-th AP computes the statistics
ỹm,k(n) only for the MSs in K(m). Accordingly, the CPU is able to perform
the following soft estimates for the data sent by the K MSs in the system:

x̂UL,uc
k (n) = ∑

m∈M(k)
ỹm,k(n) , k = 1, . . . , K . (5.22)

Notice that in this case the backhaul overhed is reduced with respect to
the CF case since each AP has to send only the soft estimates of the data
received by its associated MSs.

5.4 Performance measures and downlink power control

Note that the CF approach can be obtained as a special case of UC by letting N =

K, i.e., each AP serves all the K users in the system, soM(k) = {1, . . . , M} , ∀k =

1, . . . , K. Following this approach, in the downlink power control here explained,
the generic scalar coefficient ruling the power transmitted in downlink by the m-
th AP for the k-th MS is denoted as ηDL

k,m. From Eq. (5.16), the achievable rate in
downlink for the user k can be written as

RDL
k (η) = W log2

∣∣∣I + R−1
k Ak,kAH

k,k

∣∣∣ , (5.23)
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where
Ak,k = ∑

m∈M(k)
LH

k

√
ηDL

k,mGH
k,mĜk,m

(
ĜH

k,mĜk,m

)−1
Lk , (5.24)

Rk = σ2
z LH

k Lk +
K

∑
j=1
j 6=k

Ak,jAH
k,j , (5.25)

Ak,j = LH
k ∑

m∈M(j)

√
ηDL

j,mGH
k,mĜj,m

(
ĜH

j,mĜj,m

)−1
Lj (5.26)

and η is the KM × 1 vector collecting the transmit powers in downlink of all
APs for all MSs. Notice that Eq. (5.23) represents the achievable rate in the case
of perfect CSI, whereas it is just an approximation of the rate when channel esti-
mates are considered. Nonetheless, it still represents a good indicator of the at-
tainable performance, since the approximation error gets smaller as the reliabil-
ity in the channel estimates increases. The rest of this section will be concerned
with the optimization of the downlink transmit powers for the maximization of
the system sum-rate and minimum users’ rate, subject to maximum power con-
straints. Mathematically, the sum-rate maximization problem is formulated as
the optimization program15:

max
η

K

∑
k=1
RDL

k (η) (5.27a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m , ∀ m = 1, . . . , M (5.27b)

ηDL
k,m ≥ 0 , ∀ m = 1, . . . , M, k = 1, . . . , K, (5.27c)

whereas the minimum-rate maximization problem is

max
η

min
1≤k≤K

RDL
k (η) (5.28a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m , ∀ m = 1, . . . , M (5.28b)

ηDL
k,m ≥ 0 , ∀ m = 1, . . . , M, k = 1, . . . , K. (5.28c)

Both problems have non-concave objective functions, which makes their solu-
tion challenging. Moreover, even if the problems were concave, the large num-
ber of optimization variables, KM, would still pose a significant complexity chal-
lenge. In order to face these issues, the framework of successive lower-bound
maximization is used, recently introduced in16 [93], and briefly reviewed next.

15The procedure can be applied, with ordinary efforts, also in the case in which minimum-rate
constraints are considered.

16In [93] the method is labeled successive upper-bound minimization, since minimization
problems are considered.
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5.4.1 Successive lower-bound maximization

The main idea of the method is to merge the tools of alternating optimization [94,
Section 2.7] and sequential convex programming [95]. To elaborate, consider the
generic optimization problem

max
x∈X

f (x) , (5.29)

with f : Rn → R a differentiable function, and X a compact set. As in the al-
ternating optimization method, the successive lower-bound maximization par-
titions the variable space into M blocks, x = (x1, . . . ,xM), which are cyclically
optimized one at a time, while keeping the other variable blocks fixed. This
effectively decomposes Eq. (5.29) into M subproblems, with the generic sub-
problem stated as

max
xm

f (xm,x−m) , (5.30)

with x−m collecting all variable blocks except the m-th. It is proved in [94, Propo-
sition 2.7.1] that iteratively solving Problem (5.30) monotonically improves the
value of the objective of Problem (5.29), and converges to a first-order opti-
mal point if the solution of Problem (5.30) is unique for any m, and if X =

X1 × . . .×XM, with xm ∈ Xm for all m. Clearly, alternating optimization proves
useful when Problem (5.30) can be solved with minor complexity. If this is not
the case, the successive lower-bound maximization method proposes to tackle
Problem (5.30) by means of sequential convex programming. This does not guar-
antee to globally solve Problem (5.30), but can lead to a computationally feasible
algorithm. Moreover, it is guaranteed to preserve the properties of the alternat-
ing optimization method [93]. The idea of sequential optimization is to tackle
a difficult maximization problem by solving a sequence of easier maximization
problems. To elaborate, let us denote by gi(xm) the i-th constraint of Problem
(5.30), for i = 1, . . . , C. Then, consider a sequence of approximate problems
{P`}` with objectives { f`}` and constraint functions {gi,`}C

i=1, such that the fol-
lowing three properties are fulfilled, for all `:

(P1) f`(xm) ≤ f (xm), gi,`(xm) ≤ gi(xm), for all i and xm;

(P2) f`(x
(`−1)
m ) = f (x(`−1)

m ), gi,`(x
(`−1)
m ) = gi(x

(`−1)
m ) with x(`−1)

m the maximizer
of f`−1;

(P3) ∇ f`(x
(`−1)
m ) = ∇ f (x(`−1)

m ), ∇gi,`(x
(`−1)
m ) = ∇gi(x

(`−1)
m ).

In [95] (see also [93], [96]) it is shown that, subject to constraint qualifications,
the sequence { f (x(`)

m )}` of the solutions of the `-th Problem P`, is monotonically
increasing and converges. Moreover, every limit point of the sequence {x(`)

m }`
attains a first-order optimal point of the original Problem (5.30). Thus, the se-
quential approach enjoys strong optimality properties, fulfilling at the same
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time the monotonic improvement property for the objective function, and the
Karush–Kuhn–Tucker (KKT) first-order optimality conditions for the original
problem. Nevertheless, its applicability hinges on determining suitable lower
bounds for the original objective to maximize, which fulfill all three properties
P1, P2, P3, while at the same time leading to manageable optimization prob-
lems. In conclusion, the successive lower-bound maximization method can be
formulated as variation of the alternating optimization method, in which each
subproblem (5.30) is not globally solved, but instead is tackled by sequential op-
timization theory. It is proved in [93] that successive lower-bound maximization
has the same optimality properties as the true alternating optimization method,
under similar assumptions, even though each subproblem might not be globally
solved17.

5.4.2 Sum-rate maximization

Consider Problem (5.27) and define the variable blocks ηm, m = 1, . . . , M, col-
lecting the transmit powers of AP m. Then, the sum-rate maximization with
respect to the variable block ηm is cast as

max
ηm

K

∑
k=1
RDL

k (ηm,η−m) (5.31a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m (5.31b)

ηDL
k,m ≥ 0 , ∀ k ∈ Km . (5.31c)

The complexity of Problem (5.31) is significantly lower than that of Problem
(5.27), since only the M transmit powers of AP m are being optimized. Nev-
ertheless, Problem (5.31) is still non-convex, which makes its solution difficult.
Indeed, defining

Ak,j,m = LH
k GH

k,mĜj,m

(
ĜH

j,mĜj,m

)−1
Lj , (5.32)

the k-th user’s achievable rate can be expressed as Eq. (5.33) at the top of next
page, which can be seen to be non-concave, also with respect to only the variable
block ηm. Thus, following the successive lower-bound maximization, Problem
(5.31) will be tackled by sequential optimization. To this end, it is necessary to
derive a lower-bound of the objective of Problem (5.31), which fulfills Properties
P1, P2, and P3, while at the same time leading to a simple optimization problem.
To this end, the following lemma proves useful.

Lemma 1. The function f : (x, y) ∈ R2 → √xy is jointly concave in x and y, for
x, y > 0.

17Of course, this holds provided the additional assumption of the sequential method are ful-
filled in each iteration
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RDL
k (η) = W log2

∣∣∣∣∣σ2
z LH

k Lk +
K

∑
j=1

∑
m

∑
`

√
ηDL

j,mηDL
j,` Ak,j,mAH

k,j,`

∣∣∣∣∣︸ ︷︷ ︸
g1(η)

(5.33)

−W log2

∣∣∣∣∣∣∣∣σ
2
z LH

k Lk +
K

∑
j=1
j 6=k

∑
m

∑
`

√
ηDL

j,mηDL
j,` Ak,j,mAH

k,j,`

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
g2(η)

.

Proof: The proof follows upon computing the Hessian of
√

xy and noting that it
is negative semi-definite.
Lemma 1, coupled with the facts that the function log2 |(·)| is matrix-increasing,
and that summation preserves concavity, implies that the rate function in Eq.
(5.33) is the difference of two concave functions. This observation is instrumen-
tal for the derivation of the desired lower-bound. Indeed, recalling that any
concave function is upper-bounded by its Taylor expansion around any given
point ηm,0, a concave lower-bound ofRk is obtained as

RDL
k (η) = g1(ηm)− g2(ηm) (5.34)

≥ g1(ηm)− g2(ηm,0)−∇T
ηm

g2|ηm,0(ηm − ηm,0)

= R̃DL
k (ηm,ηm,0) .

Moreover, it is easy to check that R̃k fulfills by construction also properties P2
and P3 with respect toRk. Thus, Problem (5.31) can be tackled by the sequential
optimization framework, upon defining the `-th problem of the sequence, P`, as
the convex optimization program:

max
ηm

K

∑
k=1
R̃k(ηm,ηm,0,η−m) (5.35a)

s.t. ∑
k∈Km

ηk,m ≤ Pmax,m (5.35b)

ηk,m ≥ 0 , ∀ k ∈ Km (5.35c)

For any ηm,0, Problem (5.35) can be solved by means of standard convex opti-
mization theory, since the objective is concave, and the constraints are affine.
Additionally, with this formulation, a reduced variables set is to be optimized,
with respect to the original Problem (5.27). The resulting power control proce-
dure can be stated as in Algorithm 4. Moreover, based on the general theory
reviewed in Section 5.4.1, the following result holds.

Proposition 1. After each iteration in Line 6 of Algorithm 4, the sum-rate value
K

∑
k=1
RDL

k
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Algorithm 4 Sum-rate maximization

1: Set i = 0 and choose any feasible η2, . . . ,ηM;
2: repeat
3: for m = 1→ M do
4: repeat
5: Choose any feasible ηm,0;
6: Let η∗m be the solution of Problem (5.35);
7: ηm,0 = η∗m;
8: until convergence
9: ηm = η∗m;

10: end for
11: until convergence

is not decreased, and the resulting sequence

{
K

∑
k=1
RDL

k

}
converges. Moreover, every

limit point of the sequence {ηm}m fulfills the KKT first-order optimality conditions of
Problem (5.31).

Two remarks are now in order. First of all an extreme case of Algorithm 4 pro-
vides that only one variable block is used, namely optimizing all of the transmit
powers simultaneously. In this scenario, Algorithm 4 reduces to a pure instance
of sequential optimization, and no alternating optimization is required. Never-
theless, as already mentioned, the complexity of this approach seems prohibitive
for large M and K. Then, another extreme case is that in which the KM trans-
mit powers ηk,m are optimized one at a time, thus leading to considering KM
variable blocks. The advantage of this approach is that each subproblem (5.35)
would have only one optimization variable, and thus could be solved in semi-
closed form. This brings drastic computational complexity savings and proves
to be useful especially in the CF scenario, since in this case each variable block
ηm always has dimension K.
Computational complexity: The complexity of Algorithm 4 depends on the
complexity of Problem (5.35), and on how many such problems must be solved
before convergence. As for Problem (5.35), it is a convex problem and as such
its complexity is polynomial in the number of variables, even though the spe-
cific degree of the polynomial is not known. The best available upper-bound for
generic convex problems is provided in [97], and states that the complexity of
any convex problem scales at most with the fourth power of the number of vari-
ables. Instead, as for the number of iterations required for the "while" loops in
Algorithm 4 to reach convergence, no closed-form result is currently available.
Nevertheless, defining by IO and IS the number of iterations for the outer and
inner "while" loops to converge, the overall complexity of Algorithm 4 can be
upper-bounded by O

(
IO IS ∑M

m=1 |Km|4
)

.
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5.4.3 Minimum-rate maximization

Consider Problem (5.28). Following similar steps as in Section 5.4.2, Problem
(5.28) with respect to variable block ηm becomes

max
ηm

min
1≤k≤K

RDL
k (ηm,η−m) (5.36a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m (5.36b)

ηDL
k,m ≥ 0 , ∀k ∈ Km (5.36c)

Besides the difficulties already encountered in the sum-rate scenario, Problem
(5.36) poses the additional challenge of having a non-differentiable objective due
to the min(·) operator. To circumvent this issue, Problem (5.36) can be equiva-
lently reformulated as the program:

max
ηm,t

t (5.37a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m (5.37b)

ηDL
k,m ≥ 0 , ∀ k ∈ Km (5.37c)

RDL
k (ηm,η−m) ≥ t , ∀ k = 1, . . . , K . (5.37d)

At this point, it is possible to tackle Problem (5.37) by the sequential method.
Leveraging again the bound in Eq. (5.34) leads to considering the approximate
problem

max
ηm,t

t (5.38a)

s.t. ∑
k∈Km

ηDL
k,m ≤ Pmax,m (5.38b)

ηDL
k,m ≥ 0 , ∀ k ∈ Km (5.38c)

R̃DL
k (ηm,ηm,0,η−m) ≥ t , ∀ k = 1, . . . , K . (5.38d)

For any ηm,0, Problem (5.38) can be solved by means of standard convex opti-
mization theory, since the objective is linear, and the constraints are all convex.
The resulting power control procedure can be stated as in Algorithm 5, which
enjoys similar properties as Algorithm 4.
Computational complexity: Following similar arguments as done in Section
5.4.2 for the sum-rate case, the complexity of Algorithm 5 is upper-bounded
by O

(
IO IS ∑M

m=1(|Km|+ 1)4
)

, where it has been accounted for the fact that the
number of variables in the generic Problem (5.38) is |Km|+ 1 due to the presence
of the auxiliary variable t.
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Algorithm 5 Minimum-rate maximization

1: Set i = 0 and choose any feasible η2, . . . ,ηM;
2: repeat
3: for m = 1→ M do
4: repeat
5: Choose any feasible ηm,0;
6: Let η∗m be the solution of Problem (5.38);
7: ηm,0 = η∗m;
8: until convergence
9: ηm = η∗m;

10: end for
11: until convergence

5.5 Uplink power control

Considering again the CF approach as a special case of the UC one, from Eq.
(5.22), for the uplink, upon defining

Bk,j = ∑
m∈M(k)

G̃k,mGj,mLj (5.39)

it is obtained that the approximation (for the case of non-perfect channel knowl-
edge) of the achievable rate for the k-th user is

RUL
k (η̃) = log2

∣∣∣IPk + ηUL
k R̃−1

k Bk,kBH
k,k

∣∣∣ , (5.40)

where

R̃k =
K

∑
j=1
j 6=k

ηUL
j Bk,jBH

k,j + σ2
w ∑

m∈M(k)
G̃k,mG̃H

k,m , (5.41)

and η̃ is the K× 1 vector collecting the transmit uplink powers of all MSs. Then,
the sum-rate maximization problem is stated as

max
η̃

K

∑
k=1
RUL

k (η̃) (5.42a)

s.t. 0 ≤ ηUL
k ≤ Pmax,k ∀ k = 1, . . . , K , (5.42b)

while the minimum-rate maximization problem is stated as

max
η̃

min
1,...,K
RUL

k (η̃) (5.43a)

s.t. 0 ≤ ηUL
k ≤ Pmax,k ∀ k = 1, . . . , K . (5.43b)

Based on Eq. (5.40), it is possible to develop power control algorithms for sum-
rate and minimum-rate maximization, leveraging the sequential optimization
framework, as done in the downlink scenario. Indeed, also in the uplink case, it
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is observed that the k-th user’s rate in Eq. (5.40) can be written as the difference
of two concave functions, namely

RUL
k (η̃) = W log2

∣∣∣∣∣Gk +
K

∑
j=1

ηUL
j Bk,jBH

k,j

∣∣∣∣∣︸ ︷︷ ︸
g̃1(η̃)

−W log2

∣∣∣∣∣∣∣∣Gk +
K

∑
j=1
j 6=k

ηUL
j Bk,jBH

k,j

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
g̃2(η̃)

, (5.44)

wherein Gk = σ2
w ∑

m∈M(k)
G̃k,mG̃H

k,m for all k = 1, . . . , K. Now, it is clear that both

g̃1(·) and g̃2(·) are concave functions of η̃ and thus Eq. (5.44) shows that the k-th
user’s rate can be once again written as the difference of two concave functions.
As a consequence, for all k = 1, . . . , K, a lower-bound of the k-th user’s rate,
which fulfills all three properties of the sequential optimization method, say
R̃UL

k (η̃), is given by Eq. (5.34), in which g̃1 and g̃2 take the expression in Eq.
(5.44) above.

Remark 1. In the downlink case the number of optimization variables was KM,
with M > K, and this made it convenient, for complexity reasons, to partition
the variable space into multiple blocks of variables that were alternatively opti-
mized. On the other hand, in the uplink case there are only K variables, and this
makes it practically feasible to consider only one variable block, thus optimizing
all variables at the same time. In the sequel, the focus will be on this case, but
we stress that, if desired, the optimization algorithms can be straightforwardly
extended to the scenario in which multiple optimization blocks are defined and
iteratively optimized.

Keeping Remark 1 in mind, both sum-rate maximization and minimum-rate
maximization can be performed by similar algorithms as Algorithms 4 and 5,
respectively, in which the auxiliary problem to be solved within each iteration
are stated as

max
η̃

K

∑
k=1
R̃UL

k (η̃, η̃0) (5.45a)

s.t. 0 ≤ ηUL
k ≤ Pmax,k ∀ k = 1, . . . , K (5.45b)

for sum-rate maximization, and as

max
η̃m,t

t (5.46a)

s.t. 0 ≤ ηUL
k ≤ Pmax,k ∀ k = 1, . . . , K (5.46b)

R̃UL
k (η̃, η̃0) ≥ t , ∀ k = 1, . . . , K , (5.46c)

for minimum-rate maximization. Similar optimality properties as in the down-
link case hold.
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Computational complexity: Following similar arguments as for the downlink
scenario, the computational complexity of the proposed approach in the up-
link scenario is upper-bounded by O

(
ISK4) in the sum-rate maximization case,

and O
(

IS(K + 1)4) in the minimum-rate maximization case, where it has been
accounted for the fact that, as stated in Remark 1, only one variable block is
considered in the uplink scenario, thus removing the outer loop that is instead
present in Algorithms 4 and 5 in the downlink scenario.

5.6 Advanced signal processing techniques for UC archi-
tecture

In this Section advanced signal processing techniques are proposed in order to
improve the performance of the UC architecture. These techniques are the linear
MMSE channel estimation, the local PZF pre-coding on the downlink and SIC on
the uplink. The proposed schemes can be implemented locally, i.e., the channel
estimates and the beamformers at the APs are computed and exploited locally,
with no need to exchange information with a CPU.

5.6.1 Linear MMSE channel estimation

To perform linear MMSE channel estimation, the (NAPτp)-dimensional vector
y̌m = vec (Ym) is considered, with the matrix Ym as in Eq. (5.5), which can be
shown to be expressed as

y̌m =
K

∑
k=1

√
pk

(
ΦT

k ⊗ INAP

)
ǧk,m + w̌m , (5.47)

where ǧk,m = vec (Gk,m) is an (NAPNMS)-dimensional vector and w̌m = vec (Wm)

is an (NAPτp)-dimensional vector. Neglecting the correlation of the shadow fad-

ing and using the simplifying assumption E
[
ǧk,mǧH

k,m

]
= INAP NMS , the linear

MMSE estimate of ǧk,m is obtained as [22]:

̂̌gk,m = Rk,mR−1
m y̌m , (5.48)

where Rk,m =
√

pkΦ∗k ⊗ INAP , and

Rm =
K

∑
j=1

pj

(
ΦT

j Φ∗j ⊗ INAP

)
+ σ2

wINAPτp . (5.49)

5.6.2 PZF downlink pre-coding

The multiplexing order for all the communications is assumed equal for all the
users in the system, i.e., Pk = P, ∀k = 1, . . . , K and, consequently the channel
independent beamformer are equal for all the users, i.e., Lk = L, ∀k = 1, . . . , K.
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The signal transmitted by the m-th AP in the n-th interval can be expressed as
Eq. (5.15). The generic k-th MS receives signal contributions from all the APs
and the observable vector is expressed as Eq. (5.16). Based on the observation
of the vector ruc

k (n), a soft estimate of the data symbols xDL
k (n) is obtained at the

k-th MS as
x̂DL

k (n) = LHruc
k (n) . (5.50)

In order to design Qk,m, we assume that each AP performs a local PZF downlink
pre-coding, so that it does not interfere with a certain number, say S, of MSs18.
Another objective of this beamforming scheme is to ensure that the MSs will
be able to receive data with no information on the channel state. We denote
by S(k, m) the set, of cardinality S, containing the MSs towards which to null
the interference in the design of the precoder QDL

k,m. The NAP-dimensional p-th
column of the matrix QDL

k,m can be thus chosen in order to fulfill the following
conditions: 

(
LHĜH

k,m

)
(p,:)

Qk,m(:, p) = 1 ,(
LHĜH

k,m

)
( p̄,:)

Qk,m(:, p) = 0 ,(
LHĜH

j,m

)
(`,:)

Qk,m(:, p) = 0 ,

∀` = 1, . . . , P , ∀j ∈ S(k, m) ,

(5.51)

where the generic (A)( p̄,:) denotes a matrix contains all the rows of A except the
p-th. The above conditions can be easily fulfilled provided that NAP ≥ SP + P−
1. Regarding the set S(k, m), it assumed that it contains the S MSs, served by the
m-th AP, with the higher Frobenius norm, except the k-th.

5.6.3 SIC procedure for the uplink

Regarding the design of the SIC procedure on the uplink, starting from the set
K(m) each AP uses the following sorting operator:

Om : K(m)→ {1, . . . , K} , (5.52)

where Om(k) is the index of the MS that is in the k-th position when MSs are or-
dered in terms of decreasing Frobenius norm of the channel estimates available
at the m-th AP. Otherwise stated, the following relation holds:

‖ĜOm(1),m‖F ≥ ‖ĜOm(2),m‖F ≥ . . . ≥ ‖ĜOm(N),m‖F (5.53)

The signal received at the m-th AP in the n-th time sample is ȳm(n) in Eq. (5.18).
In order to illustrate the SIC processing at each AP, we start considering the
processing for the MS Om(1), that, according to the definition in Eq. (5.52), is the
MS with the largest channel Frobenius norm at the m-th AP, and is thus the MS

18Indeed it is not possible to null the interference towards all the MSs due to the fact that the
AP may not be equipped with the needed number of antennas to perform this operation.
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whose data are detected first. Upon defining the P × NAP-dimensional matrix
G̃k,m in Eq. (5.20), the m-th AP forms the following statistic for the MS Om(1):

ũOm(1),m(n) = G̃Om(1),mȳm(n) . (5.54)

Then, when forming the sufficient statistic for the data transmitted by the MS
Om(2), the m-th AP cancels the contribution of the estimate of the signal trans-
mitted from the MS Om(1) as follows:

ũOm(2),m(n) = G̃Om(2),m

(
ȳm(n)− ĜOm(1),mLũOm(1),m(n)

)
. (5.55)

In general, at the `-th stage, the m-th AP cancels the contribution of all the es-
timates of the signals transmitted from the MSs Om(1), . . . , Om(`− 1), so it per-
forms

ũOm(`),m(n) = G̃Om(`),m

(
ȳm(n)−

`−1

∑
j=1

ĜOm(j),mLũOm(j),m(n)

)
. (5.56)

Through simple algebra, it can be shown that Eq. (5.56) can be expressed as

ũOm(`),m(n) = G̃Om(`),m

(
`−1

∏
j=1

INAP − ĜOm(j),mLG̃Om(j),m

)
ȳm(n). (5.57)

The vectors containing the estimates of the symbols transmitted by each MSs,
after the SIC implemented at each AP, are then sent to the CPU via the back-
haul link; the CPU, finally, forms the following soft estimates of the data vectors
transmitted by the users:

x̂UL,SIC
k (n) = ∑

m∈M(k)
ũm,k(n) , k = 1, . . . , K . (5.58)

Notice that in this case the backhaul overhead is reduced with respect to the full
CF case since each AP has to send only the soft estimates of the data received by
its associated MSs. Another sorting operator is now defined, one for each user,
i.e.,

Õk : {1, . . . , M} → {0, 1, . . . , N} , (5.59)

where Õk(m) denotes the stage in which the m-th AP serves the MS k-th; the
stage “0” means that the AP m-th does not decode the k-th MS. It can be shown
that, using Eq. (5.57) and the sorting operator in Eq. (5.59), Eq. (5.22) can be
expressed as

x̂UL,SIC
k (n) = ∑

m∈M(k)
Ck,mȳm(n), (5.60)
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with k = 1, . . . , K , where Ck,m is a P× NAP-dimensional matrix defined as

Ck,m = G̃k,m

Õk(m)−1

∏
j=1

[
INAP − ĜOm(j),mLG̃Om(j),m

]
. (5.61)

Accordingly, the soft estimate of the data-symbol transmitted from the k-th MS
in the n-th time epoch can be finally written as

x̂UL,SIC
k (n) =

√
ηUL

k ∑
m∈M(k)

Ck,mGk,mLxUL
k (n)

+
K

∑
`=1
` 6=k

√
ηUL
` ∑

m∈M(k)
Ck,mG`,mLxUL

` (n) + ∑
m∈M(k)

Ck,mwm(n).
(5.62)

Based on Eq. (5.62), the k-th user uplink achievable rate is expressed as

RUL,SIC
k = W log2

∣∣∣∣IP +
√

ηUL
k Ř−1

k B̃k,kB̃H
k,k

∣∣∣∣ , (5.63)

with

Řk =
K

∑
j=1
j 6=k

√
ηUL

j B̃k,jB̃H
k,j + σ2

z ∑
m∈M(k)

Ck,mCH
k,m , (5.64)

the covariance matrix of the interfering terms, and

B̃k,j = ∑
m∈M(k)

Ck,mGj,mL . (5.65)

Similarly to Eqs. (5.23) and (5.40), Eq. (5.63) represents the achievable rate in
the case of perfect CSI, whereas it is just an approximation of the rate for the
case in which channel estimates are considered. Nonetheless, it still represents a
good indicator of the attainable performance, since the approximation error gets
smaller as the reliability in the channel estimates increases.

5.7 Numerical results

In the simulation setup, a communication bandwidth of W = 20 MHz centered
over the carrier frequency f0 = 1.9 GHz is considered. The antenna height at
the AP is 15 m and at the MS is 1.65 m. The standard deviation of the shadow
fading is σsh = 8 dB, the parameters for the three slope path loss model in Eq.
(3.3) are d1 = 50 m and d0 = 10 m, the parameter δ in Eq. (5.2) is 0.5 and the
correlation distance in Eq. (5.3) is ddecorr = 100 m. The additive thermal noise is
assumed to have a power spectral density of−174 dBm/Hz, while the front-end
receiver at the AP and at the MS is assumed to have a noise figure of 9 dB. In
order to emulate an infinite area and to avoid boundary effects, the square area
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is wrapped around. The considered setup is taken from the originally formu-
lated version of CF massive MIMO presented in [35]. The shown results come
from an average over 100 random scenario realizations with independent MSs
and APs locations and channels. It is quantitatively studied and compared the
performance of the CF and UC massive MIMO architectures. A square area of
1000× 1000 (square meters) as in [35] is considered; this area may be represen-
tative of a typical crowded environment where ultra-dense deployment of APs
will be needed. The numbers of antennas at the APs and at the MSs are as-
sumed NAP = 4 and NMS = 2, respectively, and the multiplexing order per user
is Pk = 2, ∀k = 1, . . . , K. For the PM channel estimation, it is used maximum-
length-sequences (pseudo-noise) with length τp and the uplink transmit power
for channel estimation is pk = 50 mW for each antenna, ∀k = 1, . . . , K. The
performance measures here considered are the outage probability in the UC ap-
proach, i.e the probability that a MSs is not served by any APs in the system, the
achievable rate per user, and the sum-rate of the system in uplink and downlink,
both measured in bit/s. The considered power allocation rules will be compared
for benchmarking with the uniform power allocation strategy. For the uniform
power allocation in downlink, it is simply assumed that each AP uniformly di-
vides its maximum power among the users that it serves in the system. So, for
the CF massive MIMO architecture is

ηDL,cf
k,m =

Pmax,m

Ktr
(

Qk,mQH
k,m

) , (5.66)

and for the UC massive MIMO architecture is

ηDL,uc
k,m =


Pmax,m

card [K(m)] tr
(

Qk,mQH
k,m

) if k ∈ K(m)

0 otherwise .

(5.67)

For the uniform power allocation in uplink, each MSs transmits with its maxi-
mum power, so in the CF and UC massive MIMO architecture

ηUL,cf
k = ηUL,uc

k =
Pmax,k

NMS
, ∀k = 1, . . . , K. (5.68)

In the following results, the maximum power available at each AP is 200 mW,
i.e., Pmax,m = 200 mW, ∀m and the maximum power available at each MS is 100
mW, i.e., Pmax,k = 100 mW, ∀k = 1, . . . , K.
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TABLE 5.1: Probability of observing an unserved MS in the UC
approach for M = 80, K = 15 and τp = 16

N 1 2 3 4 5 6 7
Perfect CSI 0.12 0.0274 0.0083 0.0031 0.0013 5.57 10−4 2.86 10−4

Partial CSI 0.0283 0.0010 8 10−5 6.66 10−6 0 0 0

N 8 9 10 11 12 13 14 15
Perfect CSI 1.2 10−4 6.66 10−5 3.33 10−5 0 0 0 0 0
Partial CSI 0 0 0 0 0 0 0 0

TABLE 5.2: Probability of observing an unserved MS in the UC
approach for M = 50, K = 5 and τp = 8

N 1 2 3 4 5
Perfect CSI 0.048 0.0048 5.6 10−4 10−4 0
Partial CSI 0.0015 4 10−5 0 0 0

The first performance measure considered is the outage probability in the UC
approach. Indeed, one of the possible drawbacks in the considered AP-MS as-
sociation rule is that it may happen that a MS does not end up associated with
any AP. After that the association AP-MS has been made in the UC approach,
possibly unserved MS might be associated to the closest AP to solve thus this
problem. On the other hand, it is showed that the probability to have unserved
MSs is very low, so having an unserved MS is a rare event. In Tables 5.1 and
5.2 the probability (estimated over 107 realizations) of having an unserved MS
versus N is reported, for a high density and a low density scenario. In the high
density scenario it is assumed M = 80, K = 15, and τp = 16, while in the low
density scenario M = 50, K = 5, and τp = 8 is considered. Note that increas-
ing the value of N, in both the cases of perfect and partial (i.e., estimated) CSI,
the outage probability decreases and reaches the value 0, i.e., all the users are
served at least by one AP in the system. It can be noted that in the case of partial
CSI the outage probability reaches the value 0 faster than in the case of perfect
CSI; this can be due to the fact that the randomness introduced by the noise and
the interference in the channel estimated reduces the probability of having an
unserved MS.
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FIGURE 5.2: CDF of rate per user in downlink with uniform
power allocation for a high density scenario in subfigure (a)
and for a low density scenario in subfigure (b). Parameters: (a)
M = 80, K = 15, N = 6, and τp = 16; (b) M = 50, K = 5, N = 2,

and τp = 8.
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FIGURE 5.3: CDF of rate per user in downlink with sum-rate
maximizing power allocation for a high density scenario in sub-
figure (a) and for a low density scenario in subfigure (b). Param-
eters: (a) M = 80, K = 15, N = 6, and τp = 16; (b) M = 50,

K = 5, N = 2, and τp = 8.
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FIGURE 5.4: CDF of rate per user in downlink with minimum-
rate maximizing power allocation for a high density scenario in
subfigure (a) and for a low density scenario in subfigure (b). Pa-
rameters: (a) M = 80, K = 15, N = 6, and τp = 16; (b) M = 50,

K = 5, N = 2, and τp = 8.

Then the performance measures considered are the achievable rates. Fig. 5.2
shows the cumulative distribution functions (CDFs) of the rate per user in down-
link for the CF and UC approaches for the case in which uniform power alloca-
tion (Uni) is used. Fig. 5.3 reports the CDFs of the rate per user in downlink for
the CF and UC approaches for the case in which sum-rate maximizing power
allocation (SR Max) is used and Fig. 5.4 reports CDFs of the rate per user in
downlink for the CF and UC approaches for the case in which minimum-rate
maximizing power allocation (MR Max) is used. Both the cases of perfect CSI
and partial CSI are considered. In Figs. 5.2-5.4 the results of the rate per user in
the high and low density scenarios are compared, for the high density scenario
M = 80, K = 15, N = 6, and τp = 16, while for the low density scenario M = 50,
K = 5, N = 2, and τp = 8. Inspecting these figures, the following observation
can be pointed out:

- In the low-rate region of the CDFs, the CF approach generally outperforms
the UC approach; this part of the CDF reports the performance of the un-
lucky MSs that have very bad channels towards all the APs. These MSs
take advantage of the CF deployment since they are served by a larger
number of APs (compared to the UC case) and this explains the superior-
ity of the CF approach for these MSs.

- The curves corresponding to UC and CF deployments usually cross, and,
generally, UC approach outperforms the CF approach for the vast majority
of users. This means that, excluding a small percentage of MSs with bad
channel conditions, the UC approach is beneficial, probably due to the fact
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that each AP uses its power to transmit to nearby MSs and avoids wasting
power in order to transmit to far MSs.

- The crossing does not take place in Fig. 5.3, wherein the performance cor-
responding to the maximum sum-rate power allocation policy is reported.
This behavior can be explained by noticing that when power allocation is
optimized, the CF approach provides a much greater flexibility than the
UC case. Indeed, in the UC case, MN downlink transmit powers are opti-
mized, forcing to zero the remaining M(K−N) transmit powers; in the CF
case, instead, the system achievable sum-rate over MK transmit powers is
optimized, so the solution space is much larger, and it is possible to note
that from this point of view the UC approach can be seen as a special case
of the CF one19, and this explain why for this case CF outperforms the UC
approach.

- From Fig. 5.4, then, it is seen that, as expected the CDF curves are steeper,
since the power allocation maximizing the minimum-rate introduces fair-
ness among the MSs, so there are no large disparities across the rates
achieved by each MS.
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FIGURE 5.5: Sum-rate of the system in downlink versus N. Pa-
rameters: M = 60, K = 10, and τp = 16.

Fig. 5.5 shows the average achievable sum-rate of the system in downlink ver-
sus N; assuming M = 60, K = 10, and τp = 16. From this figure, it can be noted
that, again, focusing on the sum-rate maximizing power allocation, the CF ap-
proach outperforms the UC one, whereas, if the power allocation maximizing

19This statement should not erroneously lead to the conclusion that the CF deployment is more
general and provides better performance of the UC deployment. Indeed, while the statement only
applies to downlink, it should also be considered that the CF deployment is not scalable and, also,
the power allocation routine requires many iterations to converge given the larger number (with
respect to UC approach) of variables to be optimized.
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the minimum-rate or the uniform power control allocations are considered, the
UC achieves generally better performance, in terms of average achievable sum-
rate, than the CF approaches.
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FIGURE 5.6: CDF of rate per user in uplink with uniform power
allocation for a high density scenario in subfigure (a) and for a
low density scenario in subfigure (b). Parameters: (a) M = 80,
K = 15, N = 6, and τp = 16; (b) M = 50, K = 5, N = 2, and

τp = 8.
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FIGURE 5.7: CDF of rate per user in uplink with sum-rate maxi-
mizing power allocation for a high density scenario in subfigure
(a) and for a low density scenario in subfigure (b). Parameters:
(a) M = 80, K = 15, N = 6, and τp = 16; (b) M = 50, K = 5,

N = 2, and τp = 8.
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FIGURE 5.8: CDF of rate per user in uplink with minimum-rate
maximizing power allocation for a high density scenario in sub-
figure (a) and for a low density scenario in subfigure (b). Param-
eters: (a) M = 80, K = 15, N = 6, and τp = 16; (b) M = 50,

K = 5, N = 2, and τp = 8.

With regard to the uplink, in Fig. 5.6 the CDFs of the rate per user for the CF
and UC approaches for the case in which uniform power allocation is used are
reported. Fig. 5.7 shows the CDFs of the rate per user in uplink for the CF and
UC approaches for the case in which sum-rate maximizing power allocation is
used and Fig. 5.8 reports the CDFs of the rate per user in uplink for the CF and
UC approaches for the case in which minimum-rate maximizing power alloca-
tion is used. In Figs. 5.6-5.8 the results of the rate per user in the high and low
density scenarios are compared; the parameters used here are the same as in
Figs. 5.2-5.4.
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FIGURE 5.9: Sum-rate of the system in uplink versus N. Param-
eters: M = 60, K = 10, and τp = 16.

Fig. 5.9 shows the system uplink sum-rate versus N, the number of MSs served
by each AP, when the number of users is K = 10. Inspecting these figures, it can
seen that, differently from the downlink, the UC approach outperforms the CF
one in all the cases of uniform power allocation and power control strategies,
and both in the cases of high and low density scenario. In particular, there are
situations in which the UC approach guarantees many-fold improvements with
respect to the CF strategy. This behavior can be explained by noting that, for the
uplink, the UC can be no longer regarded as a special case of the CF configura-
tion. In the uplink, the CF strategy requires that APs participate to the decoding
of far MSs, and this adds a lot of additional noise to the decision statistic that
ultimately endanger performance. In the UC approach, instead, each MS is de-
coded only by nearby APs, that can also rely on good channel estimates, and
this helps in considerably increasing the system performance.



104 Chapter 5. User-centric approach to cell-free massive MIMO networks

0 50 100 150 200 250

Rate per user [Mbit/s]

0

0.5

1

C
D

F

(a)

0 50 100 150 200 250

Rate per user [Mbit/s]

0

0.5

1

C
D

F

(b)

UC, Perfect CSI

UC+PZF, Perfect CSI

UC, Partial CSI, PM

UC+PZF, Partial CSI, PM

UC, Partial CSI, MMSE

UC+PZF, Partial CSI, MMSE

FIGURE 5.10: CDF of rate per user in downlink. Parameters:
M = 100, K = 20, τp = 16, in subfigure (a), N = 2, and in

subfigure (b), N = 5.
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FIGURE 5.11: CDF of rate per user in uplink. Parameters: M =
100, K = 20, τp = 16, in subfigure (a), N = 2, and in subfigure

(b), N = 5.

Regarding the simulation setup for the advanced signal processing tecniques
explained in Section 5.6, P = 1 is assumed and, for the PZF beamforming in the
downlink, S = 1, so, in the design of the beamformer at one AP for a generic
user, the intereference to the user received at the AP with the highest power
is canceled. For the channel estimation, randomly generated binary antipodal
pilot sequences are used with length τp = 16. In the following figures, “UC”
denotes the strategies of CM pre-coding on the downlink, in Sections 5.3.2, and
MR post-coding in the uplink, in Section 5.3.3, and “UC+PZF” and “UC+SIC”
the ones proposed in Section 5.6.2 for the downlink and in Section 5.6.3 for the
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uplink, respectively. In the following figures uniform power allocation is as-
sumed. In Figs. 5.10 and 5.11 the CDFs of the rate per user in downlink and
uplink, respectively, are reported, with N = 2 and N = 5, in the cases of perfect
CSI, with the PM channel estimation reported in Section 5.3.1 and with the lin-
ear MMSE channel estimation detailed in Section 5.6.1. Inspecting the figures,
it is possible to note that both the PZF and the SIC improve the performance of
the UC for the vast majority of the MSs in the system. As an example, consider-
ing subfigures labeled as (a), the median rate in Fig. 5.10, for the case of MMSE
channel estimation, increases from 54 Mbit/s to 84 Mb/s, with a +55% gain, and
in Fig. 5.11 it increases from 20 Mbit/s to 40 Mbit/s, with a +100% gain. Regard-
ing the AP-MS association rule, numerical evidence shows that having N = 2
provides better performance than N = 5. Finally, results also show that there is a
considerable gap between the case of perfect CSI and the cases in which channel
must be estimated. This gap can be explained by noting that pilot sequences are
correlated since it is here assumed the use of random pilots with length τp = 16
for a number of users K = 20 > τp.
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Chapter 6

Conclusions and future
developments

6.1 Summary of the results

The major topic of this Ph.D. thesis was massive MIMO technology for 5G and
beyond-5G wireless networks. In particular, massive MIMO has been studied
in conjunction with two other current research topics for the future wireless net-
works: the mm-Wave frequencies and the distributed antenna systems.
Chapter 1 has given a brief overview on the requirements of the future wireless
systems and it has discussed the contribution of the massive MIMO technology
to the development of 5G and beyond-5G wireless networks.
Chapter 2 has briefly explained some of the mathematical tools used in the cur-
rent literature in order to study the performance of the massive MIMO systems
and it has given a comparison between different techniques currently used to
evaluate the spectral efficiency bounds of such a system.
Chapter 3 has outlined a critical comparison between massive MIMO systems
at mm-Waves and at µ-Waves. Six key differences have been outlined, and their
implications on the transceiver architecture and on the attainable performance
have been discussed and validated also through computer simulations. Among
the discussed differences, the most disruptive one was the fact that MIMO sys-
tems may be doubly massive at mm-Waves. In this chapter, it has been shown
that the use of large-scale antenna arrays has not an as beneficial impact on
the system multiplexing capabilities as it has at µ-Wave frequencies. Addition-
ally, the availability of doubly massive MIMO wireless links enables the gen-
eration of very narrow beams, resulting in reduced co-channel interference to
other users using the same time-frequency resources. Another key advantage of
doubly massive MIMO systems at mm-Waves is the fact that the computational
complexity of channel estimation weakly depends on the number of antennas,
especially for the case in which analog (beam-steering) beamforming strategies
are used. While massive MIMO at µ-Wave frequencies is gradually entering
3GPP standards, mm-Waves and in particular massive mm-Wave MIMO sys-
tems are still under heavy investigation, both in academia and industry.
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Chapter 4 has provided an analysis of a multiuser doubly massive MIMO sys-
tem operating at mm-Wave frequencies and with several FD and low-complexity
beamforming architectures. The obtained results have revealed that, using some
of the most recent available data on the energy consumption of transceiver com-
ponents, FD architectures were superior not only in terms of achievable rate, but
also in terms of energy efficiency. In particular, among FD implementations, the
PZF-FD architecture has been shown to provide the best performance, while,
among the lower complexity implementations, the AN structure can be con-
sidered for its extremely low complexity. A detailed analytical study of some
beamforming structures in the large number of antennas regime has also been
provided, and results have been shown proving the accuracy of the found ap-
proximations. Of course the provided results and the relative ranking among
the considered structures in terms of energy efficiency is likely to change in the
future as technology progresses and devices with reduced power consumption
appear on the scene, even though it may be expected that in the long run FD
architectures will be fully competitive, in terms of hardware complexity and en-
ergy consumption, with HY alternatives.
Chapter 5 has focused on the recently introduced CF massive MIMO architec-
ture. First of all, it has extended the CF approach when the APs and the MSs
are equipped with multiple antennas, and it has proposed the use of a channel-
inverting beamforming scheme that does not require channel estimation at the
MSs. Then, it has compared the CF architecture with the UC approach wherein
each AP only decodes a pre-assigned number of MSs. In this chapter two power
allocation strategies for the uplink and downlink have been proposed, both for
the CF and the UC cases. The first one is a sum-rate maximizing power alloca-
tion strategy, aimed at maximizing performance of the system in terms of overall
data-rate, while the second one is a minimum-rate maximizing power allocation,
aimed at maximizing performance of the system in terms of fairness. Addition-
ally, in this chapter advanced signal processing techniques have been proposed
in order to improve the performance of the UC architecture, in particular a lo-
cal PZF downlink pre-coding at the APs and a SIC procedure for data detection
on the uplink have been detailed. Interestingly, both the SIC processing and
the downlink PZF pre-coding can be implemented with information available
locally at each AP, while, additionally, no channel estimation is required at the
MSs. Regarding the numerical results, the performance of the power allocation
strategies here proposed have been compared with the case of uniform power
allocation and the performance of the advanced signal processing techniques
have been studied. Results have shown that the UC approach generally outper-
forms the CF one, especially on the uplink. The results of the advanced signal
processing techniques have shown that the proposed algorithms are capable of
providing remarkable performance improvements with respect to the simple
CM pre-coding on the downlink and to the MR post-coding in the uplink.
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6.2 Future developments

The topic of massive MIMO systems for the future wireless networks is contin-
uously evolving, both in the industry and in academia. During the writing of
this thesis, surely new applications of this technology have been conceived and
will be studied in the next future. Some future developments of massive MIMO
technology are given in the following.
As emphasized in several points of this thesis, massive MIMO technology can
offer enhanced broadband services in the future, and more. 5G networks are
expected to support a large variety of wireless services in areas ranging from
infotainment to healthcare, smart homes and cities, manufacturing, and many
others. Massive MIMO technology can be tailored to support a massive number
of Machine Type Communication (MTC) devices. Also, it is an excellent can-
didate to realize ultra-reliable low-latency communications (URLLC) as it can
establish very robust physical links [98].
The conjunction of massive MIMO with mm-Wave frequencies allows the con-
sideration of doubly massive MIMO systems. The interest in this topic can be
justified by the high number of use cases that can be implemented to exploit the
availability of large bandwidths and consequently high data rates available at
mm-Wave [99]. Realistic use-cases can be envisioned already with the current
technology, for example: the use of large arrays for the vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communications, in order to increase also the
reliability of the communication using the antenna gain to obtain a higher re-
ceived SNR; the use of doubly massive MIMO systems for the Fixed Broadband
Wireless Access (FBWA); the use of large antenna arrays at both sides of the
communications in order to implement the wireless backhaul in a cellular net-
work. Another interesting research topic regarding the use of doubly massive
MIMO systems should be the study of modulation formats alternative to the
OFDM for these systems. The high peak-to-average power ratio (PAPR) of the
OFDM works against the advantages of using large antenna arrays, and can im-
pede good downlink performance. Recent studies indicates that single-carrier
modulations (SCMs) at mm-Wave can achieve good performance in presence of
non linear PA [39] for the single user communication. These studies can be ex-
tended to the case of multiuser systems, in presence of imperfect CSI and with
waterfilling-like power control.
The conjunction of massive MIMO with distributed antenna systems gives some
relevant research topics that can be investigated. Among others, the following
are pointed out: the consideration of the such a system at mm-Wave frequencies
(preliminary results on this are reported in [100], [101]); the coupling of dis-
tributed massive MIMO architectures with multiple access schemes such as the
non-orthogonal multiple access (NOMA); the introduction of unmanned aerial
vehicles (UAVs) in a distributed massive MIMO system, as additional APs or
as MSs, as recently discussed for a co-located massive MIMO system in [102]
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and considering the co-existence of a distributed massive MIMO system with
a radar system on the same frequency band, as preliminarly reported in [103]
considering a co-located massive MIMO system.
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